BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37559851)

  • 41. Development and validation of an ensemble artificial intelligence model for comprehensive imaging quality check to classify body parts and contrast enhancement.
    Na S; Sung YS; Ko Y; Shin Y; Lee J; Ha J; Ham SJ; Yoon K; Kim KW
    BMC Med Imaging; 2022 May; 22(1):87. PubMed ID: 35562705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. COVID-19 diagnosis: A comprehensive review of pre-trained deep learning models based on feature extraction algorithm.
    Poola RG; Pl L; Y SS
    Results Eng; 2023 Jun; 18():101020. PubMed ID: 36945336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections.
    Yang Y; Lure FYM; Miao H; Zhang Z; Jaeger S; Liu J; Guo L
    J Xray Sci Technol; 2021; 29(1):1-17. PubMed ID: 33164982
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developing an Artificial Intelligence Model for Reading Chest X-rays: Protocol for a Prospective Validation Study.
    Miró Catalina Q; Fuster-Casanovas A; Solé-Casals J; Vidal-Alaball J
    JMIR Res Protoc; 2022 Nov; 11(11):e39536. PubMed ID: 36383419
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study.
    Shaheen E; Leite A; Alqahtani KA; Smolders A; Van Gerven A; Willems H; Jacobs R
    J Dent; 2021 Dec; 115():103865. PubMed ID: 34710545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training.
    Lee JH; Ha EJ; Kim D; Jung YJ; Heo S; Jang YH; An SH; Lee K
    Eur Radiol; 2020 Jun; 30(6):3066-3072. PubMed ID: 32065285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF.
    VerMilyea M; Hall JMM; Diakiw SM; Johnston A; Nguyen T; Perugini D; Miller A; Picou A; Murphy AP; Perugini M
    Hum Reprod; 2020 Apr; 35(4):770-784. PubMed ID: 32240301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Codeless Deep Learning of COVID-19 Chest X-Ray Image Dataset with KNIME Analytics Platform.
    An JY; Seo H; Kim YG; Lee KE; Kim S; Kong HJ
    Healthc Inform Res; 2021 Jan; 27(1):82-91. PubMed ID: 33611880
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advancing Breast Cancer Research Through Collaborative Computing: Harnessing Google Colab for Innovation.
    Lam ST; Lam JW; Reddy AJ; Lee L; Yu Z; Falkenstein BE; Fu VW; Cheng E; Patel R
    Cureus; 2024 Mar; 16(3):e57280. PubMed ID: 38690491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validation Study.
    Son KY; Ko J; Kim E; Lee SY; Kim MJ; Han J; Shin E; Chung TY; Lim DH
    Ophthalmol Sci; 2022 Jun; 2(2):100147. PubMed ID: 36249697
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A fully automatic artificial intelligence-based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis.
    Yan C; Wang L; Lin J; Xu J; Zhang T; Qi J; Li X; Ni W; Wu G; Huang J; Xu Y; Woodruff HC; Lambin P
    Eur Radiol; 2022 Apr; 32(4):2188-2199. PubMed ID: 34842959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic Grading of Disc Herniation, Central Canal Stenosis and Nerve Roots Compression in Lumbar Magnetic Resonance Image Diagnosis.
    Su ZH; Liu J; Yang MS; Chen ZY; You K; Shen J; Huang CJ; Zhao QH; Liu EQ; Zhao L; Feng QJ; Pang SM; Li SL; Lu H
    Front Endocrinol (Lausanne); 2022; 13():890371. PubMed ID: 35733770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AI recognition of patient race in medical imaging: a modelling study.
    Gichoya JW; Banerjee I; Bhimireddy AR; Burns JL; Celi LA; Chen LC; Correa R; Dullerud N; Ghassemi M; Huang SC; Kuo PC; Lungren MP; Palmer LJ; Price BJ; Purkayastha S; Pyrros AT; Oakden-Rayner L; Okechukwu C; Seyyed-Kalantari L; Trivedi H; Wang R; Zaiman Z; Zhang H
    Lancet Digit Health; 2022 Jun; 4(6):e406-e414. PubMed ID: 35568690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DraiNet: AI-driven decision support in pneumothorax and pleural effusion management.
    Tatar OC; Akay MA; Metin S
    Pediatr Surg Int; 2023 Dec; 40(1):30. PubMed ID: 38151565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Smartphone-based artificial intelligence using a transfer learning algorithm for the detection and diagnosis of middle ear diseases: A retrospective deep learning study.
    Chen YC; Chu YC; Huang CY; Lee YT; Lee WY; Hsu CY; Yang AC; Liao WH; Cheng YF
    EClinicalMedicine; 2022 Sep; 51():101543. PubMed ID: 35856040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a deep learning-based patient-specific target contour prediction model for markerless tumor positioning.
    Zhou D; Nakamura M; Mukumoto N; Yoshimura M; Mizowaki T
    Med Phys; 2022 Mar; 49(3):1382-1390. PubMed ID: 35026057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Deep Residual U-Net Algorithm for Automatic Detection and Quantification of Ascites on Abdominopelvic Computed Tomography Images Acquired in the Emergency Department: Model Development and Validation.
    Ko H; Huh J; Kim KW; Chung H; Ko Y; Kim JK; Lee JH; Lee J
    J Med Internet Res; 2022 Jan; 24(1):e34415. PubMed ID: 34982041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.