These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37559900)

  • 1. The prospects of flexible natural gas-fired CCGT within a green taxonomy.
    Bui M; Sunny N; Mac Dowell N
    iScience; 2023 Aug; 26(8):107382. PubMed ID: 37559900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking Potential for Low-Carbon Hydrogen Production from U.S. Natural Gas Resources.
    Wu Z; Zhai H; Holubnyak E; Gerace S; Murphy A; Biggs C
    Environ Sci Technol; 2024 Oct; 58(42):18484-18495. PubMed ID: 39382550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future.
    Babaee S; Loughlin DH
    Clean Technol Environ Policy; 2017 Dec; 20(2):379-391. PubMed ID: 32461751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States.
    Tavakkoli S; Feng L; Miller SM; Jordaan SM
    Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sourcing of Steam and Electricity for Carbon Capture Retrofits.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2017 Nov; 51(21):12908-12917. PubMed ID: 28968494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of the Inflation Reduction Act on the Economics of Clean Hydrogen and Synthetic Liquid Fuels.
    Cheng F; Luo H; Jenkins JD; Larson ED
    Environ Sci Technol; 2023 Oct; 57(41):15336-15347. PubMed ID: 37647613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.
    Hasan N; Rai JN; Arora BB
    Springerplus; 2014; 3():275. PubMed ID: 24936394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Coproduction of Power and Syngas from Natural Gas to Abate Greenhouse Gas Emissions without Economic Penalties.
    Granovskiy M
    ACS Omega; 2021 Jun; 6(25):16336-16342. PubMed ID: 34235304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context.
    Mallapragada DS; Naik I; Ganesan K; Banerjee R; Laurenzi IJ
    Environ Sci Technol; 2019 Jan; 53(1):539-549. PubMed ID: 30495942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the role of steam methane reforming with CO
    Navas-Anguita Z; García-Gusano D; Dufour J; Iribarren D
    Sci Total Environ; 2021 Jun; 771():145432. PubMed ID: 33736161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Techno-Economic Assessment and Life Cycle Assessment of CO
    Abuov Y; Serik G; Lee W
    Environ Sci Technol; 2022 Jun; 56(12):8571-8580. PubMed ID: 35653301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.
    Talati S; Zhai H; Morgan MG
    Environ Sci Technol; 2014 Oct; 48(20):11769-76. PubMed ID: 25229670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the most likely low-emission electricity production systems in Estonia.
    Baird ZS; Neshumayev D; Järvik O; Powell KM
    PLoS One; 2021; 16(12):e0261780. PubMed ID: 34968401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO
    van der Giesen C; Meinrenken CJ; Kleijn R; Sprecher B; Lackner KS; Kramer GJ
    Environ Sci Technol; 2017 Jan; 51(2):1024-1034. PubMed ID: 27935700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits.
    Anderson JJ; Rode DC; Zhai H; Fischbeck PS
    Environ Sci Technol; 2022 Aug; 56(16):11162-11171. PubMed ID: 35926127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the greenhouse gas emissions from China's wastewater treatment plants: Based on life cycle assessment coupled with statistical data.
    Chen W; Zhang Q; Hu L; Geng Y; Liu C
    Ecotoxicol Environ Saf; 2023 Jul; 259():115007. PubMed ID: 37209571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flare gas monetization and greener hydrogen production via combination with cryptocurrency mining and carbon dioxide capture.
    Snytnikov P; Potemkin D
    iScience; 2022 Feb; 25(2):103769. PubMed ID: 35146386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.