These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique. Scheible F; Lamprecht R; Semmler M; Sutor A Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919359 [TBL] [Abstract][Full Text] [Related]
3. Dynamic MRI of larynx and vocal fold vibrations in normal phonation. Ahmad M; Dargaud J; Morin A; Cotton F J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366 [TBL] [Abstract][Full Text] [Related]
4. Behind the Complex Interplay of Phonation: Investigating Elasticity of Vocal Folds With Pipette Aspiration Technique During Ex Vivo Phonation Experiments. Scheible F; Lamprecht R; Schaan C; Veltrup R; Henningson JO; Semmler M; Sutor A J Voice; 2023 Mar; ():. PubMed ID: 37005126 [TBL] [Abstract][Full Text] [Related]
5. Surface kinematic and depth-resolved analysis of human vocal folds in vivo during phonation using optical coherence tomography. Sharma GK; Chen LY; Chou L; Badger C; Hong E; Rangarajan S; Chang TH; Armstrong WB; Verma SP; Chen Z; Ramalingam R; Wong BJ J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34414705 [TBL] [Abstract][Full Text] [Related]
6. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment. Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756 [TBL] [Abstract][Full Text] [Related]
7. Vocal fold elasticity in the pig, sheep, and cow larynges. Alipour F; Jaiswal S; Vigmostad S J Voice; 2011 Mar; 25(2):130-6. PubMed ID: 20137893 [TBL] [Abstract][Full Text] [Related]
8. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations. Miri AK; Barthelat F; Mongeau L J Voice; 2012 Nov; 26(6):688-97. PubMed ID: 22483778 [TBL] [Abstract][Full Text] [Related]
9. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies. Kimura M; Chan RW Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255 [TBL] [Abstract][Full Text] [Related]
10. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model. Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852 [TBL] [Abstract][Full Text] [Related]
11. Experimental study of vocal-ventricular fold oscillations in voice production. Matsumoto T; Kanaya M; Ishimura K; Tokuda IT J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158 [TBL] [Abstract][Full Text] [Related]
12. Assessment of canine vocal fold function after injection of a new biomaterial designed to treat phonatory mucosal scarring. Karajanagi SS; Lopez-Guerra G; Park H; Kobler JB; Galindo M; Aanestad J; Mehta DD; Kumai Y; Giordano N; d'Almeida A; Heaton JT; Langer R; Herrera VL; Faquin W; Hillman RE; Zeitels SM Ann Otol Rhinol Laryngol; 2011 Mar; 120(3):175-84. PubMed ID: 21510143 [TBL] [Abstract][Full Text] [Related]
13. Different Vibratory Conditions Elicit Different Structural and Biological Vocal Fold Changes in an In-Vivo Rabbit Model of Phonation. Kimball EE; Sayce L; Powell M; Gartling GJ; Brandley J; Rousseau B J Voice; 2021 Mar; 35(2):216-225. PubMed ID: 31542239 [TBL] [Abstract][Full Text] [Related]
14. Developing a porcine model for study of vocal fold scar. Woodson G J Voice; 2012 Nov; 26(6):706-10. PubMed ID: 22727125 [TBL] [Abstract][Full Text] [Related]
15. Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue. Kazemirad S; Bakhshaee H; Mongeau L; Kost K J Biomech; 2014 Mar; 47(5):1173-9. PubMed ID: 24433668 [TBL] [Abstract][Full Text] [Related]