BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37560416)

  • 1. A zeolite templating method for fabricating edge site-enriched N-doped carbon materials.
    Taniguchi Y; Shu Y; Takada R; Miyake K; Uchida Y; Nishiyama N
    Nanoscale Adv; 2023 Aug; 5(16):4233-4239. PubMed ID: 37560416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction.
    Lv Q; Si W; He J; Sun L; Zhang C; Wang N; Yang Z; Li X; Wang X; Deng W; Long Y; Huang C; Li Y
    Nat Commun; 2018 Aug; 9(1):3376. PubMed ID: 30139938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.
    Guo D; Shibuya R; Akiba C; Saji S; Kondo T; Nakamura J
    Science; 2016 Jan; 351(6271):361-5. PubMed ID: 26798009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.
    Choi CH; Park SH; Woo SI
    ACS Nano; 2012 Aug; 6(8):7084-91. PubMed ID: 22769428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Nitrogen-doped Carbon for Oxygen Reduction: The Role of Graphitic and Pyridinic Nitrogen Species.
    Wang D; Hu J; Wei J; Liu X; Hou H
    Chemphyschem; 2023 May; 24(10):e202200734. PubMed ID: 36759329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping.
    Yang Z; Xia Y; Sun X; Mokaya R
    J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft-Templating Synthesis of N-Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction.
    Bayatsarmadi B; Zheng Y; Jaroniec M; Qiao SZ
    Chem Asian J; 2015 Jul; 10(7):1546-53. PubMed ID: 25891306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Synthesis of Micromesoporous Iron-Nitrogen-Doped Carbon as Highly Active and Stable Oxygen Reduction Electrocatalyst.
    Yang S; Xue X; Liu X; Liu W; Bao J; Huang Y; Su H; Yuan S; Li H
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39263-39273. PubMed ID: 31553150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyridinic-N Protected Synthesis of 3D Nitrogen-Doped Porous Carbon with Increased Mesoporous Defects for Oxygen Reduction.
    Luo J; Wang K; Hua X; Wang W; Li J; Zhang S; Chen S
    Small; 2019 Mar; 15(11):e1805325. PubMed ID: 30735305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unprecedented 100% conversion from pyridinic to pyrrolic nitrogen configuration for electrochemically active nitrogen-doped carbon materials.
    Yang W; Zhang Y; Wang J; Xia M; Zhang J; He J; Guo W; Tian K; Liu S; Li X; Wang G; Wang H
    J Colloid Interface Sci; 2024 May; 662():883-892. PubMed ID: 38382372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Configuration of N-Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis.
    Lai Q; Zheng J; Tang Z; Bi D; Zhao J; Liang Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11999-12006. PubMed ID: 32298534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes.
    Sharifi T; Hu G; Jia X; Wågberg T
    ACS Nano; 2012 Oct; 6(10):8904-12. PubMed ID: 23020173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal Synthesis of a New Kind of N-Doped Graphene Gel-like Hybrid As an Enhanced ORR Electrocatalyst.
    Xiang Q; Liu Y; Zou X; Hu B; Qiang Y; Yu D; Yin W; Chen C
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10842-10850. PubMed ID: 29547254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Templating Synthesis of N/P/Fe Co-Doped 3D Porous Carbon for Oxygen Reduction Reaction Electrocatalysts in Alkaline Media.
    Rong Y; Huang S
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron/iron carbide coupled with S, N co-doped porous carbon as effective oxygen reduction reaction catalyst for microbial fuel cells.
    Li B; Li Q; Wang X
    Environ Res; 2023 Jul; 228():115808. PubMed ID: 37011794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Generated Dual-Template Method for Fe/N/S Co-Doped Hierarchically Porous Honeycomb Carbon for High-Performance Oxygen Reduction.
    Zeng H; Wang W; Li J; Luo J; Chen S
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8721-8729. PubMed ID: 29481037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells.
    Zhang B; Wen Z; Ci S; Mao S; Chen J; He Z
    ACS Appl Mater Interfaces; 2014 May; 6(10):7464-70. PubMed ID: 24720600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials.
    Singh SK; Takeyasu K; Nakamura J
    Adv Mater; 2019 Mar; 31(13):e1804297. PubMed ID: 30350433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance electrocatalyst based on polyazine derived mesoporous nitrogen-doped carbon for oxygen reduction reaction.
    Zhao S; Chen F; Zhang Q; Meng L
    RSC Adv; 2021 Sep; 11(47):29555-29563. PubMed ID: 35479528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.