These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37561157)

  • 1. Asymptotic behavior of an epidemic model with infinitely many variants.
    Burie JB; Ducrot A; Griette Q
    J Math Biol; 2023 Aug; 87(3):40. PubMed ID: 37561157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The probability of epidemic burnout in the stochastic SIR model with vital dynamics.
    Parsons TL; Bolker BM; Dushoff J; Earn DJD
    Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313708120. PubMed ID: 38277438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission Fitness in Co-colonization and the Persistence of Bacterial Pathogens.
    Gaivão M; Dionisio F; Gjini E
    Bull Math Biol; 2017 Sep; 79(9):2068-2087. PubMed ID: 28741105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
    Britton T; Juher D; Saldaña J
    Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of a time fractional order spatio-temporal SIR model.
    Sidi Ammi MR; Tahiri M; Tilioua M; Zeb A; Khan I; Andualem M
    Sci Rep; 2022 Apr; 12(1):5751. PubMed ID: 35388030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A periodic SEIRS epidemic model with a time-dependent latent period.
    Li F; Zhao XQ
    J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basic reproduction number [Formula: see text] in time-heterogeneous environments.
    Inaba H
    J Math Biol; 2019 Jul; 79(2):731-764. PubMed ID: 31087145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment.
    Zhao L; Wang ZC; Ruan S
    J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
    van den Driessche P; Yakubu AA
    Bull Math Biol; 2019 Nov; 81(11):4412-4446. PubMed ID: 29651670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIS and SIR Epidemic Models Under Virtual Dispersal.
    Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C
    Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling coupled within host and population dynamics of [Formula: see text] and [Formula: see text] HIV infection.
    Manda EC; Chirove F
    J Math Biol; 2018 Apr; 76(5):1123-1158. PubMed ID: 28762130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative prevalence-based dispersal in an epidemic patch model.
    Lu M; Gao D; Huang J; Wang H
    J Math Biol; 2023 Mar; 86(4):52. PubMed ID: 36877332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptive movement of susceptible individuals with memory.
    Zhang H; Wang H; Wei J
    J Math Biol; 2023 Mar; 86(5):65. PubMed ID: 36995472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global stability for epidemic models on multiplex networks.
    Huang YJ; Juang J; Liang YH; Wang HY
    J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical intervention scheme based on epidemic severity in a community network.
    He R; Luo X; Asamoah JKK; Zhang Y; Li Y; Jin Z; Sun GQ
    J Math Biol; 2023 Jul; 87(2):29. PubMed ID: 37452969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximation of epidemic models by diffusion processes and their statistical inference.
    Guy R; Larédo C; Vergu E
    J Math Biol; 2015 Feb; 70(3):621-46. PubMed ID: 24671428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained minimization problems for the reproduction number in meta-population models.
    Poghotanyan G; Feng Z; Glasser JW; Hill AN
    J Math Biol; 2018 Dec; 77(6-7):1795-1831. PubMed ID: 29445854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reaction-diffusion within-host HIV model with cell-to-cell transmission.
    Ren X; Tian Y; Liu L; Liu X
    J Math Biol; 2018 Jun; 76(7):1831-1872. PubMed ID: 29305736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Network Immuno-Epidemiological HIV Model.
    Gupta C; Tuncer N; Martcheva M
    Bull Math Biol; 2021 Jan; 83(3):18. PubMed ID: 33452941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical Analysis of Epidemic Models with Treatment in Heterogeneous Networks.
    Wang Y; Cao J; Xue C; Li L
    Bull Math Biol; 2023 Jan; 85(2):11. PubMed ID: 36602636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.