These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37561278)

  • 1. Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.
    Jarne C; Laje R
    J Comput Neurosci; 2023 Nov; 51(4):407-431. PubMed ID: 37561278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent neural networks as versatile tools of neuroscience research.
    Barak O
    Curr Opin Neurobiol; 2017 Oct; 46():1-6. PubMed ID: 28668365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Winning the Lottery With Neural Connectivity Constraints: Faster Learning Across Cognitive Tasks With Spatially Constrained Sparse RNNs.
    Khona M; Chandra S; Ma JJ; Fiete IR
    Neural Comput; 2023 Oct; 35(11):1850-1869. PubMed ID: 37725708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From lazy to rich to exclusive task representations in neural networks and neural codes.
    Farrell M; Recanatesi S; Shea-Brown E
    Curr Opin Neurobiol; 2023 Dec; 83():102780. PubMed ID: 37757585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
    Wang Y; Wang Y; Lui YW
    Neuroimage; 2018 Sep; 178():385-402. PubMed ID: 29782993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks.
    Goulas A; Damicelli F; Hilgetag CC
    Neural Netw; 2021 Oct; 142():608-618. PubMed ID: 34391175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encoding time in neural dynamic regimes with distinct computational tradeoffs.
    Zhou S; Masmanidis SC; Buonomano DV
    PLoS Comput Biol; 2022 Mar; 18(3):e1009271. PubMed ID: 35239644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.
    Sussillo D; Barak O
    Neural Comput; 2013 Mar; 25(3):626-49. PubMed ID: 23272922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks.
    Sikka A; Jamalabadi H; Krylova M; Alizadeh S; van der Meer JN; Danyeli L; Deliano M; Vicheva P; Hahn T; Koenig T; Bathula DR; Walter M
    Hum Brain Mapp; 2020 Jun; 41(9):2334-2346. PubMed ID: 32090423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience.
    Curto C; Morrison K
    Curr Opin Neurobiol; 2019 Oct; 58():11-20. PubMed ID: 31319287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and brain-like working memory through short-term synaptic plasticity.
    Kozachkov L; Tauber J; Lundqvist M; Brincat SL; Slotine JJ; Miller EK
    PLoS Comput Biol; 2022 Dec; 18(12):e1010776. PubMed ID: 36574424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals.
    Ioannides G; Kourouklides I; Astolfi A
    Sci Rep; 2022 Feb; 12(1):2896. PubMed ID: 35190579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured flexibility in recurrent neural networks via neuromodulation.
    Costacurta JC; Bhandarkar S; Zoltowski DM; Linderman SW
    bioRxiv; 2024 Jul; ():. PubMed ID: 39091788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Flip Flop memories and beyond: training Recurrent Neural Networks with key insights.
    Jarne C
    Front Syst Neurosci; 2024; 18():1269190. PubMed ID: 38600907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.