BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37561278)

  • 1. Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.
    Jarne C; Laje R
    J Comput Neurosci; 2023 Nov; 51(4):407-431. PubMed ID: 37561278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent neural networks as versatile tools of neuroscience research.
    Barak O
    Curr Opin Neurobiol; 2017 Oct; 46():1-6. PubMed ID: 28668365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Winning the Lottery With Neural Connectivity Constraints: Faster Learning Across Cognitive Tasks With Spatially Constrained Sparse RNNs.
    Khona M; Chandra S; Ma JJ; Fiete IR
    Neural Comput; 2023 Oct; 35(11):1850-1869. PubMed ID: 37725708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From lazy to rich to exclusive task representations in neural networks and neural codes.
    Farrell M; Recanatesi S; Shea-Brown E
    Curr Opin Neurobiol; 2023 Dec; 83():102780. PubMed ID: 37757585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
    Wang Y; Wang Y; Lui YW
    Neuroimage; 2018 Sep; 178():385-402. PubMed ID: 29782993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks.
    Goulas A; Damicelli F; Hilgetag CC
    Neural Netw; 2021 Oct; 142():608-618. PubMed ID: 34391175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encoding time in neural dynamic regimes with distinct computational tradeoffs.
    Zhou S; Masmanidis SC; Buonomano DV
    PLoS Comput Biol; 2022 Mar; 18(3):e1009271. PubMed ID: 35239644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.
    Sussillo D; Barak O
    Neural Comput; 2013 Mar; 25(3):626-49. PubMed ID: 23272922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks.
    Sikka A; Jamalabadi H; Krylova M; Alizadeh S; van der Meer JN; Danyeli L; Deliano M; Vicheva P; Hahn T; Koenig T; Bathula DR; Walter M
    Hum Brain Mapp; 2020 Jun; 41(9):2334-2346. PubMed ID: 32090423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience.
    Curto C; Morrison K
    Curr Opin Neurobiol; 2019 Oct; 58():11-20. PubMed ID: 31319287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and brain-like working memory through short-term synaptic plasticity.
    Kozachkov L; Tauber J; Lundqvist M; Brincat SL; Slotine JJ; Miller EK
    PLoS Comput Biol; 2022 Dec; 18(12):e1010776. PubMed ID: 36574424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals.
    Ioannides G; Kourouklides I; Astolfi A
    Sci Rep; 2022 Feb; 12(1):2896. PubMed ID: 35190579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Flip Flop memories and beyond: training Recurrent Neural Networks with key insights.
    Jarne C
    Front Syst Neurosci; 2024; 18():1269190. PubMed ID: 38600907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-Driven and Spontaneous Dynamics in Excitatory-Inhibitory Recurrent Neural Networks for Sequence Representation.
    Rajakumar A; Rinzel J; Chen ZS
    Neural Comput; 2021 Sep; 33(10):2603-2645. PubMed ID: 34530451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.