These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37561580)

  • 21. Rac1-stimulated macropinocytosis enhances Gβγ activation of PI3Kβ.
    Erami Z; Khalil BD; Salloum G; Yao Y; LoPiccolo J; Shymanets A; Nürnberg B; Bresnick AR; Backer JM
    Biochem J; 2017 Nov; 474(23):3903-3914. PubMed ID: 29046393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chemical biology approach demonstrates G protein βγ subunits are sufficient to mediate directional neutrophil chemotaxis.
    Surve CR; Lehmann D; Smrcka AV
    J Biol Chem; 2014 Jun; 289(25):17791-801. PubMed ID: 24808183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gβγ SNARE Interactions and Their Behavioral Effects.
    Alford S; Hamm H; Rodriguez S; Zurawski Z
    Neurochem Res; 2019 Mar; 44(3):636-649. PubMed ID: 29752624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1.
    Kahanovitch U; Tsemakhovich V; Berlin S; Rubinstein M; Styr B; Castel R; Peleg S; Tabak G; Dessauer CW; Ivanina T; Dascal N
    J Physiol; 2014 Dec; 592(24):5373-90. PubMed ID: 25384780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosducin-like protein regulates G-protein betagamma folding by interaction with tailless complex polypeptide-1alpha: dephosphorylation or splicing of PhLP turns the switch toward regulation of Gbetagamma folding.
    Humrich J; Bermel C; Bünemann M; Härmark L; Frost R; Quitterer U; Lohse MJ
    J Biol Chem; 2005 May; 280(20):20042-50. PubMed ID: 15745879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gβγ is a direct regulator of endogenous p101/p110γ and p84/p110γ PI3Kγ complexes in mouse neutrophils.
    Rynkiewicz NK; Anderson KE; Suire S; Collins DM; Karanasios E; Vadas O; Williams R; Oxley D; Clark J; Stephens LR; Hawkins PT
    Sci Signal; 2020 Nov; 13(656):. PubMed ID: 33144519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration.
    Siripurapu P; Kankanamge D; Ratnayake K; Senarath K; Karunarathne A
    J Biol Chem; 2017 Oct; 292(42):17482-17495. PubMed ID: 28864771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways.
    Mahon MJ; Bonacci TM; Divieti P; Smrcka AV
    Mol Endocrinol; 2006 Jan; 20(1):136-46. PubMed ID: 16099817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noradrenaline inhibits exocytosis via the G protein βγ subunit and refilling of the readily releasable granule pool via the α(i1/2) subunit.
    Zhao Y; Fang Q; Straub SG; Lindau M; Sharp GW
    J Physiol; 2010 Sep; 588(Pt 18):3485-98. PubMed ID: 20643776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of Gβγ Release upon GPCR Activation.
    Martemyanov KA
    Trends Biochem Sci; 2021 Sep; 46(9):703-704. PubMed ID: 34034924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis.
    Caron A; Reynolds RP; Castorena CM; Michael NJ; Lee CE; Lee S; Berdeaux R; Scherer PE; Elmquist JK
    Mol Metab; 2019 Sep; 27():11-21. PubMed ID: 31279640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
    Senarath K; Payton JL; Kankanamge D; Siripurapu P; Tennakoon M; Karunarathne A
    J Biol Chem; 2018 Feb; 293(8):2974-2989. PubMed ID: 29317505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Munc18-1 and Munc18-2 proteins modulate beta-cell Ca2+ sensitivity and kinetics of insulin exocytosis differently.
    Mandic SA; Skelin M; Johansson JU; Rupnik MS; Berggren PO; Bark C
    J Biol Chem; 2011 Aug; 286(32):28026-40. PubMed ID: 21690086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for a second, high affinity Gbetagamma binding site on Galphai1(GDP) subunits.
    Wang J; Sengupta P; Guo Y; Golebiewska U; Scarlata S
    J Biol Chem; 2009 Jun; 284(25):16906-16913. PubMed ID: 19369247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Replacing SNAP-25b with SNAP-25a expression results in metabolic disease.
    Valladolid-Acebes I; Daraio T; Brismar K; Harkany T; Ögren SO; Hökfelt TG; Bark C
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4326-35. PubMed ID: 26195742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis.
    Nevins AK; Thurmond DC
    J Biol Chem; 2005 Jan; 280(3):1944-52. PubMed ID: 15537656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new mode of Ca2+ signaling by G protein-coupled receptors: gating of IP3 receptor Ca2+ release channels by Gbetagamma.
    Zeng W; Mak DO; Li Q; Shin DM; Foskett JK; Muallem S
    Curr Biol; 2003 May; 13(10):872-6. PubMed ID: 12747838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel site of action for alpha-SNAP in the SNARE conformational cycle controlling membrane fusion.
    Barszczewski M; Chua JJ; Stein A; Winter U; Heintzmann R; Zilly FE; Fasshauer D; Lang T; Jahn R
    Mol Biol Cell; 2008 Mar; 19(3):776-84. PubMed ID: 18094056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer.
    Tang X; Sun Z; Runne C; Madsen J; Domann F; Henry M; Lin F; Chen S
    J Biol Chem; 2011 Apr; 286(15):13244-54. PubMed ID: 21349837
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.