These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37561607)
1. Investigation of Temperature-Dependent Phonon Anharmonicity and Thermal Transport in SnS Single Crystals. Li J; Yan T; Gong X; Zou H; Zhang B; Wu H; Wang G; Zhou X J Phys Chem Lett; 2023 Aug; 14(33):7346-7353. PubMed ID: 37561607 [TBL] [Abstract][Full Text] [Related]
2. Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit. Rundle J; Leoni S J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14036-14046. PubMed ID: 36051253 [TBL] [Abstract][Full Text] [Related]
3. Dynamic Lone Pair Expression as Chemical Bonding Origin of Giant Phonon Anharmonicity in Thermoelectric InTe. Zhang J; Ishikawa D; Koza MM; Nishibori E; Song L; Baron AQR; Iversen BB Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218458. PubMed ID: 36696593 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic Low Thermal Conductivity and Phonon Renormalization Due to Strong Anharmonicity of Single-Crystal Tin Selenide. Kang JS; Wu H; Li M; Hu Y Nano Lett; 2019 Aug; 19(8):4941-4948. PubMed ID: 31265307 [TBL] [Abstract][Full Text] [Related]
5. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na Du PH; Zhang C; Sun J; Li T; Sun Q ACS Appl Mater Interfaces; 2022 Oct; 14(42):47882-47891. PubMed ID: 36239388 [TBL] [Abstract][Full Text] [Related]
6. Revealing the anisotropic phonon behaviours of layered SnS by angle/temperature-dependent Raman spectroscopy. Gong X; Yan T; Li J; Liu J; Zou H; Zhang B; Wu H; Zhou Z; Zhou X RSC Adv; 2022 Nov; 12(50):32262-32269. PubMed ID: 36714047 [TBL] [Abstract][Full Text] [Related]
7. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF. Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500 [TBL] [Abstract][Full Text] [Related]
8. Study of anisotropic thermal conductivity in textured thermoelectric alloys by Raman spectroscopy. Bose RSC; Ramesh K RSC Adv; 2021 Jul; 11(39):24456-24465. PubMed ID: 35479038 [TBL] [Abstract][Full Text] [Related]
9. Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb Dawahre L; Lu R; Djieutedjeu H; Lopez J; Bailey TP; Buchanan B; Yin Z; Uher C; Poudeu PFP ACS Appl Mater Interfaces; 2020 Oct; 12(40):44991-44997. PubMed ID: 32902948 [TBL] [Abstract][Full Text] [Related]
10. Phonon Anharmonicity in Few-Layer Black Phosphorus. Tristant D; Cupo A; Ling X; Meunier V ACS Nano; 2019 Sep; 13(9):10456-10468. PubMed ID: 31436958 [TBL] [Abstract][Full Text] [Related]
11. Extended anharmonic collapse of phonon dispersions in SnS and SnSe. Lanigan-Atkins T; Yang S; Niedziela JL; Bansal D; May AF; Puretzky AA; Lin JYY; Pajerowski DM; Hong T; Chi S; Ehlers G; Delaire O Nat Commun; 2020 Sep; 11(1):4430. PubMed ID: 32887880 [TBL] [Abstract][Full Text] [Related]
12. Lattice Thermal Transport in Monolayer Group 13 Monochalcogenides MX (M = Ga, In; X = S, Se, Te): Interplay of Atomic Mass, Harmonicity, and Lone-Pair-Induced Anharmonicity. Nissimagoudar AS; Rashid Z; Ma J; Li W Inorg Chem; 2020 Oct; 59(20):14899-14909. PubMed ID: 32993283 [TBL] [Abstract][Full Text] [Related]
13. Lattice dynamics of the tin sulphides SnS Skelton JM; Burton LA; Jackson AJ; Oba F; Parker SC; Walsh A Phys Chem Chem Phys; 2017 May; 19(19):12452-12465. PubMed ID: 28470289 [TBL] [Abstract][Full Text] [Related]
14. Thermoelectric transport properties of orthorhombic RbBaX (X = Sb, Bi) with strong anharmonicity. Song X; Zhao Y; He M; Ni J; Meng S; Dai Z J Chem Phys; 2023 Jan; 158(1):014107. PubMed ID: 36610964 [TBL] [Abstract][Full Text] [Related]
15. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS Pandit A; Hamad B J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140 [TBL] [Abstract][Full Text] [Related]
16. Origin of Intrinsically Low Thermal Conductivity in Talnakhite Cu Xie H; Su X; Zhang X; Hao S; Bailey TP; Stoumpos CC; Douvalis AP; Hu X; Wolverton C; Dravid VP; Uher C; Tang X; Kanatzidis MG J Am Chem Soc; 2019 Jul; 141(27):10905-10914. PubMed ID: 31203611 [TBL] [Abstract][Full Text] [Related]
17. Lattice Thermal Conductivity in XMg Wu M; Yang H; Xie F; Huang L Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068094 [TBL] [Abstract][Full Text] [Related]
18. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
19. Intrinsically Low Thermal Conductivity in a Novel Cu-S Modified ZrS Li Z; Zhou Z; Zhang J; Zhu C; Qiu P; Deng T; Xu F; Chen L; Shi X Small; 2023 Dec; 19(52):e2304718. PubMed ID: 37621034 [TBL] [Abstract][Full Text] [Related]
20. Correlation of rattlers with thermal transport and thermoelectric performance. She A; Zhao Y; Ni J; Meng S; Dai Z Phys Chem Chem Phys; 2023 Aug; 25(33):22467-22476. PubMed ID: 37581268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]