These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37561773)

  • 1. A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester.
    Shepertycky M; Liu YF; Li Q
    PLoS One; 2023; 18(8):e0289811. PubMed ID: 37561773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removing energy with an exoskeleton reduces the metabolic cost of walking.
    Shepertycky M; Burton S; Dickson A; Liu YF; Li Q
    Science; 2021 May; 372(6545):957-960. PubMed ID: 34045349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW; Dembia CL; Delp SL; Collins SH
    J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance.
    Malcolm P; Galle S; Van den Berghe P; De Clercq D
    J Neuroeng Rehabil; 2018 Aug; 15(1):74. PubMed ID: 30092800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults.
    Lakmazaheri A; Song S; Vuong BB; Biskner B; Kado DM; Collins SH
    J Neuroeng Rehabil; 2024 Jan; 21(1):1. PubMed ID: 38167151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How adaptation, training, and customization contribute to benefits from exoskeleton assistance.
    Poggensee KL; Collins SH
    Sci Robot; 2021 Sep; 6(58):eabf1078. PubMed ID: 34586837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.
    Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
    Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.