These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 37561813)

  • 1. Nonlinear expression patterns and multiple shifts in gene network interactions underlie robust phenotypic change in Drosophila melanogaster selected for night sleep duration.
    Souto-Maior C; Serrano Negron YL; Harbison ST
    PLoS Comput Biol; 2023 Aug; 19(8):e1011389. PubMed ID: 37561813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep.
    Harbison ST; Serrano Negron YL; Hansen NF; Lobell AS
    PLoS Genet; 2017 Dec; 13(12):e1007098. PubMed ID: 29240764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian Rhythms and Sleep in
    Dubowy C; Sehgal A
    Genetics; 2017 Apr; 205(4):1373-1397. PubMed ID: 28360128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional networks for alcohol sensitivity in Drosophila melanogaster.
    Morozova TV; Mackay TF; Anholt RR
    Genetics; 2011 Apr; 187(4):1193-205. PubMed ID: 21270389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the Transcriptional Regulatory Network Correlates with Regulatory Divergence in Drosophila.
    Yang B; Wittkopp PJ
    Mol Biol Evol; 2017 Jun; 34(6):1352-1362. PubMed ID: 28333240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster.
    Lin Y; Golovnina K; Chen ZX; Lee HN; Negron YL; Sultana H; Oliver B; Harbison ST
    BMC Genomics; 2016 Jan; 17():28. PubMed ID: 26732976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis.
    Kraaijeveld K; Oostra V; Liefting M; Wertheim B; de Meijer E; Ellers J
    BMC Genomics; 2018 Dec; 19(1):892. PubMed ID: 30526508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buffering of Genetic Regulatory Networks in Drosophila melanogaster.
    Fear JM; León-Novelo LG; Morse AM; Gerken AR; Van Lehmann K; Tower J; Nuzhdin SV; McIntyre LM
    Genetics; 2016 Jul; 203(3):1177-90. PubMed ID: 27194752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transcriptional network associated with natural variation in Drosophila aggressive behavior.
    Edwards AC; Ayroles JF; Stone EA; Carbone MA; Lyman RF; Mackay TF
    Genome Biol; 2009; 10(7):R76. PubMed ID: 19607677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative genetic analysis of sleep in Drosophila melanogaster.
    Harbison ST; Sehgal A
    Genetics; 2008 Apr; 178(4):2341-60. PubMed ID: 18430954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster.
    Swarup S; Harbison ST; Hahn LE; Morozova TV; Yamamoto A; Mackay TF; Anholt RR
    Genet Res (Camb); 2012 Feb; 94(1):9-20. PubMed ID: 22353245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster.
    Svetec N; Zhao L; Saelao P; Chiu JC; Begun DJ
    BMC Evol Biol; 2015 Mar; 15():41. PubMed ID: 25887180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection on sleep duration in Drosophila melanogaster.
    Souto-Maior C; Serrano Negron YL; Harbison ST
    Sci Rep; 2020 Nov; 10(1):20652. PubMed ID: 33244154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of causal genes, networks, and transcriptional regulators of REM sleep and wake.
    Millstein J; Winrow CJ; Kasarskis A; Owens JR; Zhou L; Summa KC; Fitzpatrick K; Zhang B; Vitaterna MH; Schadt EE; Renger JJ; Turek FW
    Sleep; 2011 Nov; 34(11):1469-77. PubMed ID: 22043117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of seminal fluid protein expression via regulatory hubs in
    Mohorianu I; Fowler EK; Dalmay T; Chapman T
    Proc Biol Sci; 2018 Sep; 285(1887):. PubMed ID: 30257913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mechanisms limit the duration of wakefulness in Drosophila brain.
    Zimmerman JE; Rizzo W; Shockley KR; Raizen DM; Naidoo N; Mackiewicz M; Churchill GA; Pack AI
    Physiol Genomics; 2006 Nov; 27(3):337-50. PubMed ID: 16954408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using qualitative probability in reverse-engineering gene regulatory networks.
    Ibrahim ZM; Ngom A; Tawfik AY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):326-34. PubMed ID: 20876933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila.
    Faragó A; Zsindely N; Bodai L
    Sci Rep; 2019 May; 9(1):7174. PubMed ID: 31073199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic responses to the socio-sexual environment in male
    Mohorianu I; Bretman A; Smith DT; Fowler EK; Dalmay T; Chapman T
    RNA; 2017 Jul; 23(7):1048-1059. PubMed ID: 28428330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association study of sleep in Drosophila melanogaster.
    Harbison ST; McCoy LJ; Mackay TF
    BMC Genomics; 2013 Apr; 14():281. PubMed ID: 23617951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.