These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37561815)

  • 1. Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH
    Su ZS; Lee YP
    J Phys Chem A; 2023 Aug; 127(33):6902-6915. PubMed ID: 37561815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared characterization of the products and the rate coefficient of the reaction between Criegee intermediate CH
    Liang WC; Luo PL; Lee YP
    Phys Chem Chem Phys; 2021 May; 23(18):11082-11090. PubMed ID: 33949520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unimolecular Kinetics of Stabilized CH
    Robinson C; Onel L; Newman J; Lade R; Au K; Sheps L; Heard DE; Seakins PW; Blitz MA; Stone D
    J Phys Chem A; 2022 Oct; 126(39):6984-6994. PubMed ID: 36146923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction between the methyl Criegee intermediate and hydrogen chloride: an FTMW spectroscopic study.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2018 Sep; 20(35):22569-22575. PubMed ID: 30159563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Self-Reaction Kinetics of Criegee Intermediates syn-CH
    Luo PL; Endo Y; Lee YP
    J Phys Chem Lett; 2018 Aug; 9(15):4391-4395. PubMed ID: 30024766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared Characterization of the Products and Rate Coefficient of the Reaction between Criegee Intermediate CH
    Chung CA; Hsu CW; Lee YP
    J Phys Chem A; 2022 Sep; 126(34):5738-5750. PubMed ID: 35994612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared identification of the Criegee intermediates syn- and anti-CH₃CHOO, and their distinct conformation-dependent reactivity.
    Lin HY; Huang YH; Wang X; Bowman JM; Nishimura Y; Witek HA; Lee YP
    Nat Commun; 2015 May; 6():7012. PubMed ID: 25959902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unimolecular decomposition rates of a methyl-substituted Criegee intermediate
    Li YL; Kuo MT; Lin JJ
    RSC Adv; 2020 Feb; 10(14):8518-8524. PubMed ID: 35497839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reactivity of the Criegee intermediate CH
    Cabezas C; Endo Y
    J Chem Phys; 2018 Jan; 148(1):014308. PubMed ID: 29306294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and kinetics of the reaction of the Criegee intermediate CH
    Behera B; Takahashi K; Lee YP
    Phys Chem Chem Phys; 2022 Aug; 24(31):18568-18581. PubMed ID: 35917139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Reaction CH
    Ji YT; Lee YP
    J Phys Chem A; 2021 Sep; 125(38):8373-8385. PubMed ID: 34524829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Computational Studies of Criegee Intermediate
    Liu S; Zhou X; Chen Y; Liu Y; Yu S; Takahashi K; Ding H; Ding Z; Yang X; Dong W
    J Phys Chem A; 2021 Oct; 125(39):8587-8594. PubMed ID: 34558283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep tunneling in the unimolecular decay of CH
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Dec; 145(23):234308. PubMed ID: 28010089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.
    Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ
    Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and isotope effects in the reaction of CH
    Chao W; Lin YH; Yin C; Lin WH; Takahashi K; Lin JJ
    Phys Chem Chem Phys; 2019 Jul; 21(25):13633-13640. PubMed ID: 31187818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Scheer AM; Shallcross DE; Rotavera B; Lee EP; Dyke JM; Mok DK; Osborn DL; Percival CJ
    Science; 2013 Apr; 340(6129):177-80. PubMed ID: 23580524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared spectral identification of the Criegee intermediate (CH
    Wang YY; Chung CY; Lee YP
    J Chem Phys; 2016 Oct; 145(15):154303. PubMed ID: 27782495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO.
    Lin LC; Chang HT; Chang CH; Chao W; Smith MC; Chang CH; Min Lin J; Takahashi K
    Phys Chem Chem Phys; 2016 Feb; 18(6):4557-68. PubMed ID: 26797528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of OH formation from stabilised Criegee intermediates.
    Novelli A; Vereecken L; Lelieveld J; Harder H
    Phys Chem Chem Phys; 2014 Oct; 16(37):19941-51. PubMed ID: 25119645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.