These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37562102)

  • 1. Establishing boundary conditions in sewer pipe/soil heat transfer modelling using physics-informed learning.
    Li J; Mohamad NNN; Sharma K; Yuan Z
    Water Res; 2023 Oct; 244():120441. PubMed ID: 37562102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.
    Dürrenmatt DJ; Wanner O
    Water Res; 2014 Jan; 48():548-58. PubMed ID: 24216228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the potential for multi-location in-sewer heat recovery at a city scale under different seasonal scenarios.
    Abdel-Aal M; Schellart A; Kroll S; Mohamed M; Tait S
    Water Res; 2018 Nov; 145():618-630. PubMed ID: 30199806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential influence of sewer heat recovery on in-sewer processes.
    Abdel-Aal M; Villa R; Jawiarczyk N; Alibardi L; Jensen H; Schellart A; Jefferson B; Shepley P; Tait S
    Water Sci Technol; 2019 Dec; 80(12):2344-2351. PubMed ID: 32245926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the viability of heat recovery from combined sewers.
    Abdel-Aal M; Smits R; Mohamed M; De Gussem K; Schellart A; Tait S
    Water Sci Technol; 2014; 70(2):297-306. PubMed ID: 25051477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the wastewater temperature in sewers with TEMPEST.
    Dürrenmatt DJ; Wanner O
    Water Sci Technol; 2008; 57(11):1809-15. PubMed ID: 18547935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting wastewater temperatures in sewer pipes using abductive network models.
    Abdel-Aal M; Mohamed M; Smits R; Abdel-Aal RE; De Gussem K; Schellart A; Tait S
    Water Sci Technol; 2015; 71(1):89-96. PubMed ID: 25607674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling temperature dynamics in sewer systems - comparing mechanistic and conceptual modelling approaches.
    Saagi R; Arnell M; Reyes D; Wärff C; Ahlström M; Jeppsson U
    Water Sci Technol; 2021 Nov; 84(9):2335-2352. PubMed ID: 34810315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A distributed heat transfer model for thermal-hydraulic analyses in sewer networks.
    Figueroa A; Hadengue B; Leitão JP; Rieckermann J; Blumensaat F
    Water Res; 2021 Oct; 204():117649. PubMed ID: 34543972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmonized assessment of nutrient pollution from urban systems including losses from sewer exfiltration: a case study in Germany.
    Nguyen HH; Venohr M
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63878-63893. PubMed ID: 33495958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolved methane in the influent of three Australian wastewater treatment plants fed by gravity sewers.
    Short MD; Daikeler A; Wallis K; Peirson WL; Peters GM
    Sci Total Environ; 2017 Dec; 599-600():85-93. PubMed ID: 28472696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-building heat recovery mitigates adverse temperature effects on biological wastewater treatment: A network-scale analysis of thermal-hydraulics in sewers.
    Hadengue B; Joshi P; Figueroa A; Larsen TA; Blumensaat F
    Water Res; 2021 Oct; 204():117552. PubMed ID: 34455156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic evaluation of biomarker stability in pilot scale sewer pipes.
    Gao J; Li J; Jiang G; Shypanski AH; Nieradzik LM; Yuan Z; Mueller JF; Ort C; Thai PK
    Water Res; 2019 Mar; 151():447-455. PubMed ID: 30641462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the interactions of decentralized and centralized wastewater heat recovery systems.
    Sitzenfrei R; Hillebrand S; Rauch W
    Water Sci Technol; 2017 Mar; 75(5-6):1243-1250. PubMed ID: 28272053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and application of improved solids modelling to enable resilient urban sewer networks.
    Murali MK; Hipsey MR; Ghadouani A; Yuan Z
    J Environ Manage; 2019 Jun; 240():219-230. PubMed ID: 30947090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning approach for predicting and localizing the failure and damage point in sewer networks due to pipe properties.
    Goodarzi MR; Vazirian M
    J Water Health; 2024 Mar; 22(3):487-509. PubMed ID: 38557566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of suitable private-secondary-main sewer diameters in rural areas based on cost model and hydraulic calculation.
    Li W; Zheng T; Ma Y; Liu J
    J Environ Manage; 2021 Mar; 281():111925. PubMed ID: 33422912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting concrete corrosion of sewers using artificial neural network.
    Jiang G; Keller J; Bond PL; Yuan Z
    Water Res; 2016 Apr; 92():52-60. PubMed ID: 26841228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental determination of the H
    Pacheco Fernández M; Barjenbruch M
    Water Sci Technol; 2022 Aug; 86(3):445-456. PubMed ID: 35960829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations for assessing stability of wastewater-based epidemiology biomarkers using biofilm-free and sewer reactor tests.
    Choi PM; Li J; Gao J; O'Brien JW; Thomas KV; Thai PK; Jiang G; Mueller JF
    Sci Total Environ; 2020 Mar; 709():136228. PubMed ID: 31887516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.