These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37562112)
21. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis? Selgrade BP; Meyer D; Sosnoff JJ; Franz JR PLoS One; 2020; 15(3):e0230202. PubMed ID: 32155225 [TBL] [Abstract][Full Text] [Related]
22. Instrumental assessment of dynamic postural stability in patients with unilateral vestibular hypofunction during straight, curved, and blindfolded gait. Tramontano M; Manzari L; Bustos ASO; De Angelis S; Montemurro R; Belluscio V; Bergamini E; Vannozzi G Eur Arch Otorhinolaryngol; 2024 Jan; 281(1):83-94. PubMed ID: 37382626 [TBL] [Abstract][Full Text] [Related]
23. Head movement kinematics are altered during balance stability exercises in individuals with vestibular schwannoma. Zobeiri OA; Wang L; Millar JL; Schubert MC; Cullen KE J Neuroeng Rehabil; 2022 Nov; 19(1):120. PubMed ID: 36352393 [TBL] [Abstract][Full Text] [Related]
24. Fall Prediction Based on Instrumented Measures of Gait and Turning in Daily Life in People with Multiple Sclerosis. Arpan I; Shah VV; McNames J; Harker G; Carlson-Kuhta P; Spain R; El-Gohary M; Mancini M; Horak FB Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015700 [TBL] [Abstract][Full Text] [Related]
25. Improvements in trunk sway observed for stance and gait tasks during recovery from an acute unilateral peripheral vestibular deficit. Allum JH; Adkin AL Audiol Neurootol; 2003; 8(5):286-302. PubMed ID: 12904683 [TBL] [Abstract][Full Text] [Related]
26. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Spain RI; St George RJ; Salarian A; Mancini M; Wagner JM; Horak FB; Bourdette D Gait Posture; 2012 Apr; 35(4):573-8. PubMed ID: 22277368 [TBL] [Abstract][Full Text] [Related]
27. Maximum walking speed in multiple sclerosis assessed with visual perceptive computing. Grobelny A; Behrens JR; Mertens S; Otte K; Mansow-Model S; Krüger T; Gusho E; Bellmann-Strobl J; Paul F; Brandt AU; Schmitz-Hübsch T PLoS One; 2017; 12(12):e0189281. PubMed ID: 29244874 [TBL] [Abstract][Full Text] [Related]
28. Trunk kinematics during walking in persons with multiple sclerosis: the influence of body weight support. Swinnen E; Baeyens JP; Pintens S; Van Nieuwenhoven J; Ilsbroukx S; Buyl R; Ron C; Goossens M; Meeusen R; Kerckhofs E NeuroRehabilitation; 2014; 34(4):731-40. PubMed ID: 24796441 [TBL] [Abstract][Full Text] [Related]
29. Trunk sway measures of postural stability during clinical balance tests: effects of a unilateral vestibular deficit. Allum JH; Adkin AL; Carpenter MG; Held-Ziolkowska M; Honegger F; Pierchala K Gait Posture; 2001 Dec; 14(3):227-37. PubMed ID: 11600326 [TBL] [Abstract][Full Text] [Related]
30. An investigation of the contribution of different turn speeds during standing turns in individuals with and without Parkinson's disease. Khobkhun F; Santiago PRP; Tahara AK; Srivanitchapoom P; Richards J Sci Rep; 2022 Dec; 12(1):22566. PubMed ID: 36581700 [TBL] [Abstract][Full Text] [Related]
31. Recovery times of stance and gait balance control after an acute unilateral peripheral vestibular deficit. Allum JH; Honegger F J Vestib Res; 2016; 25(5-6):219-31. PubMed ID: 26890423 [TBL] [Abstract][Full Text] [Related]
32. Gait and trunk kinematics during prolonged turning in Parkinson's disease with freezing of gait. Mitchell T; Conradsson D; Paquette C Parkinsonism Relat Disord; 2019 Jul; 64():188-193. PubMed ID: 31000328 [TBL] [Abstract][Full Text] [Related]
33. Local dynamic stability during long-fatiguing walks in people with multiple sclerosis. Arpan I; Fino PC; Fling BW; Horak F Gait Posture; 2020 Feb; 76():122-127. PubMed ID: 31760315 [TBL] [Abstract][Full Text] [Related]
34. Head and body center of gravity control strategies: adaptations following vestibular rehabilitation. Patten C; Horak FB; Krebs DE Acta Otolaryngol; 2003 Jan; 123(1):32-40. PubMed ID: 12625570 [TBL] [Abstract][Full Text] [Related]
35. The use of laboratory gait analysis for understanding gait deterioration in people with multiple sclerosis. Cofré Lizama LE; Khan F; Lee PV; Galea MP Mult Scler; 2016 Dec; 22(14):1768-1776. PubMed ID: 27364324 [TBL] [Abstract][Full Text] [Related]
36. Inter-joint coordination during gait in people with multiple sclerosis: A focus on the effect of disability. Pau M; Leban B; Massa D; Porta M; Frau J; Coghe G; Cocco E Mult Scler Relat Disord; 2022 Apr; 60():103741. PubMed ID: 35305428 [TBL] [Abstract][Full Text] [Related]
37. The effect of vibrotactile biofeedback of trunk sway on balance control in multiple sclerosis. van der Logt RP; Findling O; Rust H; Yaldizli O; Allum JH Mult Scler Relat Disord; 2016 Jul; 8():58-63. PubMed ID: 27456875 [TBL] [Abstract][Full Text] [Related]
38. A wearable sensor identifies alterations in community ambulation in multiple sclerosis: contributors to real-world gait quality and physical activity. Shema-Shiratzky S; Hillel I; Mirelman A; Regev K; Hsieh KL; Karni A; Devos H; Sosnoff JJ; Hausdorff JM J Neurol; 2020 Jul; 267(7):1912-1921. PubMed ID: 32166481 [TBL] [Abstract][Full Text] [Related]
39. Full-body kinematics and head stabilisation strategies during walking in patients with chronic unilateral and bilateral vestibulopathy. Grouvel G; Boutabla A; Corre J; Revol R; Franco Carvalho M; Cavuscens S; Ranieri M; Cugnot JF; McCrum C; van de Berg R; Guinand N; Pérez Fornos A; Armand S Sci Rep; 2024 May; 14(1):11757. PubMed ID: 38783000 [TBL] [Abstract][Full Text] [Related]
40. Between-site equivalence of turning speed assessments using inertial measurement units. Parrington L; King LA; Weightman MM; Hoppes CW; Lester ME; Dibble LE; Fino PC Gait Posture; 2021 Oct; 90():245-251. PubMed ID: 34530311 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]