These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3756222)

  • 1. X-ray determination of the crystallinity in bone mineral.
    Matsushima N; Tokita M; Hikichi K
    Biochim Biophys Acta; 1986 Oct; 883(3):574-9. PubMed ID: 3756222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age changes in the crystallinity of bone mineral and in the disorder of its crystal.
    Matsushima N; Hikichi K
    Biochim Biophys Acta; 1989 Aug; 992(2):155-9. PubMed ID: 2758062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone.
    Bonar LC; Roufosse AH; Sabine WK; Grynpas MD; Glimcher MJ
    Calcif Tissue Int; 1983; 35(2):202-9. PubMed ID: 6850400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of crystal size distributions on the crystallinity analysis of bone mineral.
    Miller AG; Burnell JM
    Calcif Tissue Res; 1977 Dec; 24(2):105-11. PubMed ID: 597748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A simple method for the determination of the mineral content of bone biopsy specimens based on the weakening of x-rays].
    Schmidt W; Seffner W
    Arch Exp Veterinarmed; 1970; 24(5):1123-6. PubMed ID: 5512682
    [No Abstract]   [Full Text] [Related]  

  • 6. Age-related changes in mineral of rat and bovine cortical bone.
    Legros R; Balmain N; Bonel G
    Calcif Tissue Int; 1987 Sep; 41(3):137-44. PubMed ID: 3117340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse X-ray scattering from apatite crystals and its relation to amorphous bone mineral.
    Aoba T; Moriwaki Y; Doi Y; Okazaki M; Takahashi J; Yagi T
    J Osaka Univ Dent Sch; 1980 Dec; 20():81-90. PubMed ID: 6940993
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of compression on bone mineral. A preliminary report.
    Pintér J; Rischák G; Lénárt G
    Clin Orthop Relat Res; 1972; 83():286-91. PubMed ID: 5014824
    [No Abstract]   [Full Text] [Related]  

  • 9. Orientation of bone mineral and its role in the anisotropic mechanical properties of bone--transverse anisotropy.
    Sasaki N; Matsushima N; Ikawa T; Yamamura H; Fukuda A
    J Biomech; 1989; 22(2):157-64. PubMed ID: 2540205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Possibilities and limitations of objective radiological methods for the determination of bone mineral content using comparative absorption measurements].
    Kriester A
    Fortschr Geb Rontgenstr Nuklearmed; 1968 Aug; 109(2):174-84. PubMed ID: 5692662
    [No Abstract]   [Full Text] [Related]  

  • 11. [Use of computerized x-ray tomography in the quantitative determination of mineral content].
    Tellkamp H; Rosenkranz G
    Radiol Diagn (Berl); 1984; 25(1):41-6. PubMed ID: 6701289
    [No Abstract]   [Full Text] [Related]  

  • 12. Development of a method of X-ray densitometry for bone mineral measurement.
    Griffith ER; Stonebridge JB; Piernick D; Lehman JF
    Am J Phys Med; 1973 Jun; 52(3):128-49. PubMed ID: 4707975
    [No Abstract]   [Full Text] [Related]  

  • 13. [X-ray dosimetric method for the quantitative determination of the bone mineral component].
    Grigorian EA; Zhdanov GP; Frygin VA
    Vestn Rentgenol Radiol; 1981; (3):20-3. PubMed ID: 7269201
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitative in-vivo determination of bone mineral using computerized roentgenographic densitometry.
    Price RI; Retallack RW; Gutteridge DH; Black JL; Glancy J; Hughes D; Munslow-Davies L; Uitermark E; Mallal SA
    Australas Phys Eng Sci Med; 1983; 6(3):128-37. PubMed ID: 6679276
    [No Abstract]   [Full Text] [Related]  

  • 15. Accuracy of bone mineral data.
    Rustgi SN; Siegel JA; Braunstein M; Craven JD; Greenfield MA
    AJR Am J Roentgenol; 1980 Aug; 135(2):275-7. PubMed ID: 6773326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone mineral measurement with a continuous roentgen ray spectrum and a germanium detector.
    Jonson R; Roos B; Hansson T
    Acta Radiol Diagn (Stockh); 1986; 27(1):105-9. PubMed ID: 3962711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The estimation of bone mineral content at selected skeletal sites by gamma-ray absorption.
    Smith CB; Horton PW; Aitken JM; Smith DA
    Br J Radiol; 1974 Jun; 47(558):314-8. PubMed ID: 4835208
    [No Abstract]   [Full Text] [Related]  

  • 18. A biophysical study of posttraumatic ectopic ossification. A case report.
    Chantraine A; Véry JM; Baud CA
    Clin Orthop Relat Res; 1990 Jun; (255):289-92. PubMed ID: 2112077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The examination of mineral deposits in pathological tissues by electron diffraction.
    Parsons DF
    Int Rev Exp Pathol; 1968; 6():1-54. PubMed ID: 4884085
    [No Abstract]   [Full Text] [Related]  

  • 20. [Intravital measurement of mineral salt concentration in skeletal bones by the method of relative symmetrical photometry of x-rays].
    Volodina GI; Kugel'mas MK
    Vestn Rentgenol Radiol; 1972; 47(3):48-52. PubMed ID: 4643224
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.