These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37562303)
1. Smart and programmed thermo-wetting yarns for scalable and customizable moisture/heat conditioning textiles. Liang J; Ding L; Yu Z; Zhang X; Chen S; Wang Y J Colloid Interface Sci; 2023 Dec; 651():612-621. PubMed ID: 37562303 [TBL] [Abstract][Full Text] [Related]
2. Industrially Scalable Textile Sensing Interfaces for Extended Artificial Tactile and Human Motion Monitoring without Compromising Comfort. Wang F; Li H; Hu P; Wang Y; Guan F; Su X; Iqbal MI; Sun F ACS Appl Mater Interfaces; 2024 Apr; 16(13):16788-16799. PubMed ID: 38520339 [TBL] [Abstract][Full Text] [Related]
3. Smart Humidly Adaptive Yarns and Textiles from Twisted and Coiled Viscose Fiber Artificial Muscles. Guo M; Peng Y; Chen Z; Sheng N; Sun F Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499808 [TBL] [Abstract][Full Text] [Related]
4. Customizable Textile Sensors Based on Helical Core-Spun Yarns for Seamless Smart Garments. Wang L; Tian M; Qi X; Sun X; Xu T; Liu X; Zhu S; Zhang X; Qu L Langmuir; 2021 Mar; 37(10):3122-3129. PubMed ID: 33682406 [TBL] [Abstract][Full Text] [Related]
5. Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns. Szewczyk PK; Busolo T; Kar-Narayan S; Stachewicz U ACS Appl Mater Interfaces; 2023 Dec; 15(48):56575-56586. PubMed ID: 37985370 [TBL] [Abstract][Full Text] [Related]
6. A Wearable Textile Thermograph. Lugoda P; Hughes-Riley T; Morris R; Dias T Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037070 [TBL] [Abstract][Full Text] [Related]
7. Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. Yu A; Pu X; Wen R; Liu M; Zhou T; Zhang K; Zhang Y; Zhai J; Hu W; Wang ZL ACS Nano; 2017 Dec; 11(12):12764-12771. PubMed ID: 29211958 [TBL] [Abstract][Full Text] [Related]
8. Hygroscopic cooling (h-cool) fabric with highly efficient sweat evaporation and heat dissipation for personal thermo-moisture management. Li Z; Guo N; Zhu Y; Feng W; Wang H; Zhang P; Zhao F Int J Biol Macromol; 2024 May; 267(Pt 2):131658. PubMed ID: 38636759 [TBL] [Abstract][Full Text] [Related]
9. Highly Stretchable and Flexible Melt Spun Thermoplastic Conductive Yarns for Smart Textiles. Islam GMN; Collie S; Qasim M; Ali MA Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255229 [TBL] [Abstract][Full Text] [Related]
11. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications. Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842 [TBL] [Abstract][Full Text] [Related]
12. Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling. Miao D; Cheng N; Wang X; Yu J; Ding B Nano Lett; 2022 Jan; 22(2):680-687. PubMed ID: 34994570 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired Janus Textile with Conical Micropores for Human Body Moisture and Thermal Management. Dai B; Li K; Shi L; Wan X; Liu X; Zhang F; Jiang L; Wang S Adv Mater; 2019 Oct; 31(41):e1904113. PubMed ID: 31456222 [TBL] [Abstract][Full Text] [Related]
15. Thermal and Moisture Managing E-Textiles Enabled by Janus Hierarchical Gradient Honeycombs. Zhang Y; Fu J; Ding Y; Babar AA; Song X; Chen F; Yu X; Zheng Z Adv Mater; 2024 Mar; 36(13):e2311633. PubMed ID: 38112378 [TBL] [Abstract][Full Text] [Related]
16. Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. Lou M; Abdalla I; Zhu M; Wei X; Yu J; Li Z; Ding B ACS Appl Mater Interfaces; 2020 Apr; 12(17):19965-19973. PubMed ID: 32275380 [TBL] [Abstract][Full Text] [Related]
17. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing. Wu R; Ma L; Hou C; Meng Z; Guo W; Yu W; Yu R; Hu F; Liu XY Small; 2019 Aug; 15(31):e1901558. PubMed ID: 31116907 [TBL] [Abstract][Full Text] [Related]
18. On the Effect of Sweat on Sheet Resistance of Knitted Conductive Yarns in Wearable Antenna Design. Tajin AS; Levitt AS; Liu Y; Amanatides CE; Schauer CL; Dion G; Dandekar KR IEEE Antennas Wirel Propag Lett; 2020 Apr; 19(4):542-546. PubMed ID: 34707465 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties, in vitro degradation and cytocompatibility of woven textiles manufactured from PLA/PCL commingled yarns. Pereira-Lobato C; Echeverry-Rendón M; Fernández-Blázquez JP; González C; LLorca J J Mech Behav Biomed Mater; 2024 Feb; 150():106340. PubMed ID: 38147762 [TBL] [Abstract][Full Text] [Related]
20. Flexible Temperature Sensor Integration into E-Textiles Using Different Industrial Yarn Fabrication Processes. Lugoda P; Costa JC; Oliveira C; Garcia-Garcia LA; Wickramasinghe SD; Pouryazdan A; Roggen D; Dias T; Münzenrieder N Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]