BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37562303)

  • 1. Smart and programmed thermo-wetting yarns for scalable and customizable moisture/heat conditioning textiles.
    Liang J; Ding L; Yu Z; Zhang X; Chen S; Wang Y
    J Colloid Interface Sci; 2023 Dec; 651():612-621. PubMed ID: 37562303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Industrially Scalable Textile Sensing Interfaces for Extended Artificial Tactile and Human Motion Monitoring without Compromising Comfort.
    Wang F; Li H; Hu P; Wang Y; Guan F; Su X; Iqbal MI; Sun F
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16788-16799. PubMed ID: 38520339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Humidly Adaptive Yarns and Textiles from Twisted and Coiled Viscose Fiber Artificial Muscles.
    Guo M; Peng Y; Chen Z; Sheng N; Sun F
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Customizable Textile Sensors Based on Helical Core-Spun Yarns for Seamless Smart Garments.
    Wang L; Tian M; Qi X; Sun X; Xu T; Liu X; Zhu S; Zhang X; Qu L
    Langmuir; 2021 Mar; 37(10):3122-3129. PubMed ID: 33682406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns.
    Szewczyk PK; Busolo T; Kar-Narayan S; Stachewicz U
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56575-56586. PubMed ID: 37985370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wearable Textile Thermograph.
    Lugoda P; Hughes-Riley T; Morris R; Dias T
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths.
    Yu A; Pu X; Wen R; Liu M; Zhou T; Zhang K; Zhang Y; Zhai J; Hu W; Wang ZL
    ACS Nano; 2017 Dec; 11(12):12764-12771. PubMed ID: 29211958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hygroscopic cooling (h-cool) fabric with highly efficient sweat evaporation and heat dissipation for personal thermo-moisture management.
    Li Z; Guo N; Zhu Y; Feng W; Wang H; Zhang P; Zhao F
    Int J Biol Macromol; 2024 May; 267(Pt 2):131658. PubMed ID: 38636759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stretchable and Flexible Melt Spun Thermoplastic Conductive Yarns for Smart Textiles.
    Islam GMN; Collie S; Qasim M; Ali MA
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Responsive MXene-Functionalized Wool Yarn Artificial Muscles.
    Zhan L; Chen S; Xin Y; Lv J; Fu H; Gao D; Jiang F; Zhou X; Wang N; Lee PS
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402196. PubMed ID: 38650164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications.
    Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS
    Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling.
    Miao D; Cheng N; Wang X; Yu J; Ding B
    Nano Lett; 2022 Jan; 22(2):680-687. PubMed ID: 34994570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wicking dynamics in yarns.
    Fischer R; Schlepütz CM; Zhao J; Boillat P; Hegemann D; Rossi RM; Derome D; Carmeliet J
    J Colloid Interface Sci; 2022 Nov; 625():1-11. PubMed ID: 35714401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Janus Textile with Conical Micropores for Human Body Moisture and Thermal Management.
    Dai B; Li K; Shi L; Wan X; Liu X; Zhang F; Jiang L; Wang S
    Adv Mater; 2019 Oct; 31(41):e1904113. PubMed ID: 31456222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and Moisture Managing E-Textiles Enabled by Janus Hierarchical Gradient Honeycombs.
    Zhang Y; Fu J; Ding Y; Babar AA; Song X; Chen F; Yu X; Zheng Z
    Adv Mater; 2024 Mar; 36(13):e2311633. PubMed ID: 38112378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring.
    Lou M; Abdalla I; Zhu M; Wei X; Yu J; Li Z; Ding B
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19965-19973. PubMed ID: 32275380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties, in vitro degradation and cytocompatibility of woven textiles manufactured from PLA/PCL commingled yarns.
    Pereira-Lobato C; Echeverry-Rendón M; Fernández-Blázquez JP; González C; LLorca J
    J Mech Behav Biomed Mater; 2024 Feb; 150():106340. PubMed ID: 38147762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing.
    Wu R; Ma L; Hou C; Meng Z; Guo W; Yu W; Yu R; Hu F; Liu XY
    Small; 2019 Aug; 15(31):e1901558. PubMed ID: 31116907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Effect of Sweat on Sheet Resistance of Knitted Conductive Yarns in Wearable Antenna Design.
    Tajin AS; Levitt AS; Liu Y; Amanatides CE; Schauer CL; Dion G; Dandekar KR
    IEEE Antennas Wirel Propag Lett; 2020 Apr; 19(4):542-546. PubMed ID: 34707465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Temperature Sensor Integration into E-Textiles Using Different Industrial Yarn Fabrication Processes.
    Lugoda P; Costa JC; Oliveira C; Garcia-Garcia LA; Wickramasinghe SD; Pouryazdan A; Roggen D; Dias T; Münzenrieder N
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.