BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37562303)

  • 21. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles.
    Hossain MM; Lubna MM; Bradford PD
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3365-3376. PubMed ID: 36622361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications.
    Busolo T; Szewczyk PK; Nair M; Stachewicz U; Kar-Narayan S
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16876-16886. PubMed ID: 33783199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Personal Microenvironment Management by Smart Textiles with Negative Oxygen Ions Releasing and Radiative Cooling Performance.
    Chen Y; Du Z; Zhang J; Zeng P; Liang H; Wang Y; Sun Q; Zhou G; Li H
    ACS Nano; 2023 Jul; 17(14):13269-13277. PubMed ID: 37428964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perspiration-Wicking and Luminescent On-Skin Electronics Based on Ultrastretchable Janus E-Textiles.
    Dong J; Peng Y; Pu L; Chang K; Li L; Zhang C; Ma P; Huang Y; Liu T
    Nano Lett; 2022 Sep; 22(18):7597-7605. PubMed ID: 36083829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.
    Baby R; Mathur K; DenHartog E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4652-4664. PubMed ID: 33428371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-Homogeneous and Hierarchical Electronic Textiles with Porosity-Hydrophilicity Dual-Gradient for Unidirectional Sweat Transport, Electrophysiological Monitoring, and Body-Temperature Visualization.
    Dong J; Peng Y; Wang D; Li L; Zhang C; Lai F; He G; Zhao X; Yan XP; Ma P; Hofkens J; Huang Y; Liu T
    Small; 2023 Apr; 19(14):e2206572. PubMed ID: 36592428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing.
    Feng J; Hontañón E; Blanes M; Meyer J; Guo X; Santos L; Paltrinieri L; Ramlawi N; Smet LC; Nirschl H; Kruis FE; Schmidt-Ott A; Biskos G
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14756-65. PubMed ID: 27196424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A High-Performance Passive Radiative Cooling Metafabric with Janus Wettability and Thermal Conduction.
    Du P; Zhao X; Zhan X; Li X; Hou K; Ji Y; Fan Z; Muhammad J; Ge F; Cai Z
    Small; 2024 Jun; ():e2403751. PubMed ID: 38940499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wicking through complex interfaces at interlacing yarns.
    Fischer R; Schlepütz CM; Rossi RM; Derome D; Carmeliet J
    J Colloid Interface Sci; 2022 Nov; 626():416-425. PubMed ID: 35803141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weaving Off-The-Shelf Yarns into Textile Micro Total Analysis Systems (μTAS).
    Öberg Månsson I; Piper A; Hamedi MM
    Macromol Biosci; 2020 Nov; 20(11):e2000150. PubMed ID: 32686256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications.
    Wang Y; Liu X; Zhu C; Parsons A; Liu J; Huang S; Ahmed I; Rudd C; Sharmin N
    J Mech Behav Biomed Mater; 2019 Nov; 99():47-55. PubMed ID: 31344522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ag NW-Embedded Coaxial Nanofiber-Coated Yarns with High Stretchability and Sensitivity for Wearable Multi-Sensing Textiles.
    Dai Y; Qi K; Ou K; Song Y; Zhou Y; Zhou M; Song H; He J; Wang H; Wang R
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11244-11258. PubMed ID: 36791272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Fabrication of Smart Diapers with Antibacterial Yarn.
    Lin JH; Shiu BC; Lou CW; Chang YJ
    J Healthc Eng; 2017; 2017():8046134. PubMed ID: 29065646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of an electrochemically aligned collagen yarn for textile scaffold fabrication.
    Xie Y; Chen J; Celik H; Akkus O; King MW
    Biomed Mater; 2021 Feb; 16(2):025001. PubMed ID: 33494084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.
    Ryan JD; Mengistie DA; Gabrielsson R; Lund A; Müller C
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9045-9050. PubMed ID: 28245105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biospired Janus Silk E-Textiles with Wet-Thermal Comfort for Highly Efficient Biofluid Monitoring.
    He X; Fan C; Xu T; Zhang X
    Nano Lett; 2021 Oct; 21(20):8880-8887. PubMed ID: 34647458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dual-mode textile for human body radiative heating and cooling.
    Hsu PC; Liu C; Song AY; Zhang Z; Peng Y; Xie J; Liu K; Wu CL; Catrysse PB; Cai L; Zhai S; Majumdar A; Fan S; Cui Y
    Sci Adv; 2017 Nov; 3(11):e1700895. PubMed ID: 29296678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic Spectral Metafabric with Unidirectional Moisture Transport Property for Personal Thermal Management.
    Zheng R; Wang M; Jiang M; Wang H; Jin Y; Li X
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38966874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of Conductive Materials with Textile Structures, an Overview.
    Tseghai GB; Malengier B; Fante KA; Nigusse AB; Van Langenhove L
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.