These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37562303)

  • 41. MXene-Decorated Smart Textiles with the Desired Mid-Infrared Emissivity for Passive Personal Thermal Management.
    Dong XX; Cao YM; Wang C; Wu B; Zheng M; Xue YB; Li W; Han B; Zheng M; Wang ZS; Zhuo MP
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12032-12040. PubMed ID: 36802223
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing.
    Xiao G; Ju J; Li M; Wu H; Jian Y; Sun W; Wang W; Li CM; Qiao Y; Lu Z
    Biosens Bioelectron; 2023 Sep; 235():115389. PubMed ID: 37216843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles.
    Wu S; Liu J; Cai J; Zhao J; Duan B; Chen S
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34450602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Study of Thermistor Performance within a Textile Structure.
    Hughes-Riley T; Lugoda P; Dias T; Trabi CL; Morris RH
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Moisture-Wicking and Solar-Heated Coaxial Fibers with a Bark-like Appearance for Fabric Comfort Management.
    Xu J; Du X; Xin B; Kan C; Xiao Y; Chen Z; Zhou M; Yan Q
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26590-26600. PubMed ID: 34047185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Fe Staple-Fiber Spun-Yarns and Correlation Models on Textile Pressure Sensors.
    Choi M; Vu CC; Kim J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Design and Development of Woven Textile Solar Panels.
    Abeywickrama N; Kgatuke M; Marasinghe K; Nashed MN; Oliveira C; Shahidi AM; Dias T; Hughes-Riley T
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wash Testing of Electronic Yarn.
    Hardy DA; Rahemtulla Z; Satharasinghe A; Shahidi A; Oliveira C; Anastasopoulos I; Nashed MN; Kgatuke M; Komolafe A; Torah R; Tudor J; Hughes-Riley T; Beeby S; Dias T
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing.
    Foroughi J; Spinks GM; Aziz S; Mirabedini A; Jeiranikhameneh A; Wallace GG; Kozlov ME; Baughman RH
    ACS Nano; 2016 Oct; 10(10):9129-9135. PubMed ID: 27607843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Weavable and Scalable Cotton-Yarn-Based Battery Activated by Human Sweat for Textile Electronics.
    Xiao G; Ju J; Lu H; Shi X; Wang X; Wang W; Xia Q; Zhou G; Sun W; Li CM; Qiao Y; Lu Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103822. PubMed ID: 34989163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant-Like Tropisms in Artificial Muscles.
    Aziz S; Zhang X; Naficy S; Salahuddin B; Jager EWH; Zhu Z
    Adv Mater; 2023 Dec; 35(51):e2212046. PubMed ID: 36965152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management.
    Gong W; Guo Y; Yang W; Wu Z; Xing R; Liu J; Wei W; Zhou J; Guo Y; Li K; Hou C; Li Y; Zhang Q; Dickey MD; Wang H
    ACS Nano; 2022 Aug; 16(8):12635-12644. PubMed ID: 35930746
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wicking-Polarization-Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles.
    Gong W; Wang X; Yang W; Zhou J; Han X; Dickey MD; Su Y; Hou C; Li Y; Zhang Q; Wang H
    Adv Mater; 2021 Apr; 33(15):e2007352. PubMed ID: 33660354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Commercial Silk-Based Electronic Yarns Fabricated Using Microwave Irradiation.
    Na D; Choi J; Lee J; Jeon JW; Kim BH
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27353-27357. PubMed ID: 31287645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns.
    Ryan JD; Lund A; Hofmann AI; Kroon R; Sarabia-Riquelme R; Weisenberger MC; Müller C
    ACS Appl Energy Mater; 2018 Jun; 1(6):2934-2941. PubMed ID: 29963656
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of microfluidic flow in amphiphilic fabrics.
    Owens TL; Leisen J; Beckham HW; Breedveld V
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3796-803. PubMed ID: 21942403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radiative cooling and anisotropic wettability in E-textile for comfortable biofluid monitoring.
    Li X; Dai B; Wang L; Yang X; Xu T; Zhang X
    Biosens Bioelectron; 2023 Oct; 237():115434. PubMed ID: 37301178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy Harvesting and Signal Sensing.
    Ma L; Zhou M; Wu R; Patil A; Gong H; Zhu S; Wang T; Zhang Y; Shen S; Dong K; Yang L; Wang J; Guo W; Wang ZL
    ACS Nano; 2020 Apr; 14(4):4716-4726. PubMed ID: 32255615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Smart textiles using fluid-driven artificial muscle fibers.
    Phan PT; Thai MT; Hoang TT; Davies J; Nguyen CC; Phan HP; Lovell NH; Do TN
    Sci Rep; 2022 Jun; 12(1):11067. PubMed ID: 35773415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study of Aramid Yarns Sizing.
    Krstović K; Kovačević S; Schwarz I; Brnada S
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.