These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 37562311)
41. A thermodynamically stable O2-type cathode with reversible O2-P2 phase transition for advanced sodium-ion batteries. Hou P; Lin Z; Dong M; Sun Z; Gong M; Li F; Xu X J Colloid Interface Sci; 2023 Nov; 649():1006-1013. PubMed ID: 37392680 [TBL] [Abstract][Full Text] [Related]
42. Fluorine Substitution Promotes Air-Stability of P'2-Type Layered Cathodes for Sodium-Ion Batteries. Chen X; Zheng S; Liu P; Sun Z; Zhu K; Li H; Liu Y; Jiao L Small; 2023 Jan; 19(4):e2205789. PubMed ID: 36420673 [TBL] [Abstract][Full Text] [Related]
43. Electrochemical Storage Behavior of a High-Capacity Mg-Doped P2-Type Na Islam M; Ahmed MS; Han D; Bari GAKMR; Nam KW Gels; 2023 Dec; 10(1):. PubMed ID: 38247747 [TBL] [Abstract][Full Text] [Related]
44. Correlation between the Cation Disorders of Fe Lim SG; Kwon MS; Kim T; Kim H; Lee S; Lim J; Kim H; Lee KT ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830246 [TBL] [Abstract][Full Text] [Related]
45. Utilizing Co Wang QC; Hu E; Pan Y; Xiao N; Hong F; Fu ZW; Wu XJ; Bak SM; Yang XQ; Zhou YN Adv Sci (Weinh); 2017 Nov; 4(11):1700219. PubMed ID: 29201619 [TBL] [Abstract][Full Text] [Related]
46. Sb-Doped Biphasic P2/O3-Type Mn-Rich Layered Oxide Cathode Material for High-Performance Sodium-Ion Batteries. Jamil S; Mudasar F; Yuan T; Fasehullah M; Ali G; Chae KH; Voznyy O; Zhan Y; Xu M ACS Appl Mater Interfaces; 2024 Mar; 16(12):14669-14679. PubMed ID: 38498683 [TBL] [Abstract][Full Text] [Related]
47. Insights of the Electrochemical Reversibility of P2-Type Sodium Manganese Oxide Cathodes via Modulation of Transition Metal Vacancies. Xiao Z; Zuo W; Liu X; Xie J; He H; Xiang Y; Liu H; Yang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38305-38314. PubMed ID: 34346686 [TBL] [Abstract][Full Text] [Related]
48. High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries. Cai T; Cai M; Mu J; Zhao S; Bi H; Zhao W; Dong W; Huang F Nanomicro Lett; 2023 Nov; 16(1):10. PubMed ID: 37943381 [TBL] [Abstract][Full Text] [Related]
49. Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodium-Ion Battery Electrode. Cheng C; Ding M; Yan T; Jiang J; Mao J; Feng X; Chan TS; Li N; Zhang L Small Methods; 2022 Mar; 6(3):e2101524. PubMed ID: 35084117 [TBL] [Abstract][Full Text] [Related]
50. Stabilizing P2-Type Ni-Mn Oxides as High-Voltage Cathodes by a Doping-Integrated Coating Strategy Based on Zinc for Sodium-Ion Batteries. Zhang F; Liao J; Xu L; Wu W; Wu X ACS Appl Mater Interfaces; 2021 Sep; 13(34):40695-40704. PubMed ID: 34427079 [TBL] [Abstract][Full Text] [Related]
51. Recent Progress of P2-Type Layered Transition-Metal Oxide Cathodes for Sodium-Ion Batteries. Liu Z; Xu X; Ji S; Zeng L; Zhang D; Liu J Chemistry; 2020 Jun; 26(35):7747-7766. PubMed ID: 32086844 [TBL] [Abstract][Full Text] [Related]
52. Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. Chu M; Huang Z; Zhang T; Wang R; Shao T; Wang C; Zhu W; He L; Chen J; Zhao W; Xiao Y ACS Appl Mater Interfaces; 2021 May; 13(17):19950-19958. PubMed ID: 33891814 [TBL] [Abstract][Full Text] [Related]
53. Copper Substitution in P2-Type Sodium Layered Oxide To Mitigate Phase Transition and Enhance Cyclability of Sodium-Ion Batteries. Wen Y; Huang Z; Le J; Dai P; Shi C; Li G; Zhou S; Fan J; Zhuang S; Lu M; Huang L; Sun SG ACS Appl Mater Interfaces; 2022 Jul; 14(26):29813-29821. PubMed ID: 35749257 [TBL] [Abstract][Full Text] [Related]
54. Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries. Wu W; Zhang P; Chen S; Liu X; Feng G; Zuo M; Xing W; Zhang B; Fan W; Zhang H; Zhang P; Zhang J; Xiang W J Colloid Interface Sci; 2024 Nov; 674():1-8. PubMed ID: 38908061 [TBL] [Abstract][Full Text] [Related]
55. Modulating Valence Electrons and Na Occupancy in Layered Cathodes for High-Performance Na-Ion Batteries. Yan L; Li X; Pan H ACS Appl Mater Interfaces; 2024 May; 16(20):26280-26287. PubMed ID: 38720529 [TBL] [Abstract][Full Text] [Related]
56. Enhancing P2/O3 Biphasic Cathode Performance for Sodium-Ion Batteries: A Metaheuristic Approach to Multi-Element Doping Design. Paidi AK; Park WB; Paidi VK; Lee J; Lee KS; Ahn H; Avdeev M; Chae KH; Pyo M; Wu J; Sohn KS; Ahn D; Lu J Small; 2024 Sep; 20(38):e2402585. PubMed ID: 38860560 [TBL] [Abstract][Full Text] [Related]
57. Revealing the Role of Ruthenium on the Performance of P2-Type Na Altin E; Moeez I; Kwon E; Bhatti AHU; Yu S; Chung KY; Arshad M; Harfouche M; Buldu M; Altundag S; Bulut F; Sahinbay S; Altin S; Ates MN Small; 2024 Dec; 20(50):e2406332. PubMed ID: 39358947 [TBL] [Abstract][Full Text] [Related]
58. High-Energy Earth-Abundant Cathodes with Enhanced Cationic/Anionic Redox for Sustainable and Long-Lasting Na-Ion Batteries. Zhang X; Zuo W; Liu S; Zhao C; Li Q; Gao Y; Liu X; Xiao D; Hwang I; Ren Y; Sun CJ; Chen Z; Wang B; Feng Y; Yang W; Xu GL; Amine K; Yu H Adv Mater; 2024 Aug; 36(33):e2310659. PubMed ID: 38871360 [TBL] [Abstract][Full Text] [Related]
59. Study of Synergistic Effects of Cu and Fe on P2-Type Na Luo R; Zheng J; Zhou Z; Li J; Li Y; He Z ACS Appl Mater Interfaces; 2022 Oct; 14(42):47863-47871. PubMed ID: 36239389 [TBL] [Abstract][Full Text] [Related]
60. Effect of Sodium Content on the Electrochemical Performance of Li-Substituted, Manganese-Based, Sodium-Ion Layered Oxide Cathodes. Huang Q; He P; Xiao L; Feng Y; Liu J; Yang Y; Huang B; Cui X; Wang P; Wei W ACS Appl Mater Interfaces; 2020 Jan; 12(2):2191-2198. PubMed ID: 31846282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]