These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 37562848)
1. ATP-independent substrate recruitment to proteasomal degradation in mycobacteria. von Rosen T; Pepelnjak M; Quast JP; Picotti P; Weber-Ban E Life Sci Alliance; 2023 Oct; 6(10):. PubMed ID: 37562848 [TBL] [Abstract][Full Text] [Related]
2. DnaK dependence of the mycobacterial stress-responsive regulator HspR is mediated through its hydrophobic C-terminal tail. Bandyopadhyay B; Das Gupta T; Roy D; Das Gupta SK J Bacteriol; 2012 Sep; 194(17):4688-97. PubMed ID: 22753065 [TBL] [Abstract][Full Text] [Related]
3. Modulation of DNA-binding activity of Mycobacterium tuberculosis HspR by chaperones. Das Gupta T; Bandyopadhyay B; Das Gupta SK Microbiology (Reading); 2008 Feb; 154(Pt 2):484-490. PubMed ID: 18227252 [TBL] [Abstract][Full Text] [Related]
4. Pupylation-dependent and -independent proteasomal degradation in mycobacteria. Imkamp F; Ziemski M; Weber-Ban E Biomol Concepts; 2015 Aug; 6(4):285-301. PubMed ID: 26352358 [TBL] [Abstract][Full Text] [Related]
5. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome. Bolten M; Delley CL; Leibundgut M; Boehringer D; Ban N; Weber-Ban E Structure; 2016 Dec; 24(12):2138-2151. PubMed ID: 27839949 [TBL] [Abstract][Full Text] [Related]
6. Loss-of-Function Mutations in HspR Rescue the Growth Defect of a Mycobacterium tuberculosis Proteasome Accessory Factor E ( Jastrab JB; Samanovic MI; Copin R; Shopsin B; Darwin KH J Bacteriol; 2017 Apr; 199(7):. PubMed ID: 28096448 [No Abstract] [Full Text] [Related]
7. Proteasome substrate capture and gate opening by the accessory factor PafE from Hu K; Jastrab JB; Zhang S; Kovach A; Zhao G; Darwin KH; Li H J Biol Chem; 2018 Mar; 293(13):4713-4723. PubMed ID: 29414791 [TBL] [Abstract][Full Text] [Related]
8. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis. Jastrab JB; Wang T; Murphy JP; Bai L; Hu K; Merkx R; Huang J; Chatterjee C; Ovaa H; Gygi SP; Li H; Darwin KH Proc Natl Acad Sci U S A; 2015 Apr; 112(14):E1763-72. PubMed ID: 25831519 [TBL] [Abstract][Full Text] [Related]
9. Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome. Delley CL; Laederach J; Ziemski M; Bolten M; Boehringer D; Weber-Ban E PLoS One; 2014; 9(12):e114348. PubMed ID: 25469515 [TBL] [Abstract][Full Text] [Related]
10. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. Striebel F; Hunkeler M; Summer H; Weber-Ban E EMBO J; 2010 Apr; 29(7):1262-71. PubMed ID: 20203624 [TBL] [Abstract][Full Text] [Related]
11. Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Bucca G; Brassington AM; Hotchkiss G; Mersinias V; Smith CP Mol Microbiol; 2003 Oct; 50(1):153-66. PubMed ID: 14507371 [TBL] [Abstract][Full Text] [Related]
12. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Lupoli TJ; Fay A; Adura C; Glickman MS; Nathan CF Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7947-E7956. PubMed ID: 27872278 [TBL] [Abstract][Full Text] [Related]
13. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. Leodolter J; Warweg J; Weber-Ban E PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022 [TBL] [Abstract][Full Text] [Related]
14. The β-Grasp Domain of Proteasomal ATPase Mpa Makes Critical Contacts with the Mycobacterium tuberculosis 20S Core Particle to Facilitate Degradation. Xiao X; Feng X; Yoo JH; Kovach A; Darwin KH; Li H mSphere; 2022 Oct; 7(5):e0027422. PubMed ID: 35993699 [TBL] [Abstract][Full Text] [Related]
15. The Bacterial Proteasome at the Core of Diverse Degradation Pathways. Müller AU; Weber-Ban E Front Mol Biosci; 2019; 6():23. PubMed ID: 31024929 [TBL] [Abstract][Full Text] [Related]
16. The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger. Bucca G; Brassington AM; Schönfeld HJ; Smith CP Mol Microbiol; 2000 Dec; 38(5):1093-103. PubMed ID: 11123682 [TBL] [Abstract][Full Text] [Related]
17. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. Nelson B; Hong SH; Lupoli TJ ACS Infect Dis; 2022 May; 8(5):901-910. PubMed ID: 35412813 [TBL] [Abstract][Full Text] [Related]
18. CbpA acts as a modulator of HspR repressor DNA binding activity in Helicobacter pylori. Roncarati D; Danielli A; Scarlato V J Bacteriol; 2011 Oct; 193(20):5629-36. PubMed ID: 21840971 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms targeting apolipoprotein B100 to proteasomal degradation: evidence that degradation is initiated by BiP binding at the N terminus and the formation of a p97 complex at the C terminus. Rutledge AC; Qiu W; Zhang R; Kohen-Avramoglu R; Nemat-Gorgani N; Adeli K Arterioscler Thromb Vasc Biol; 2009 Apr; 29(4):579-85. PubMed ID: 19164805 [TBL] [Abstract][Full Text] [Related]
20. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Andersen MT; Brøndsted L; Pearson BM; Mulholland F; Parker M; Pin C; Wells JM; Ingmer H Microbiology (Reading); 2005 Mar; 151(Pt 3):905-915. PubMed ID: 15758235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]