These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37563203)
41. Gum Arabic polymer-stabilized and Gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: Powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients. El-Batal AI; Abd Elkodous M; El-Sayyad GS; Al-Hazmi NE; Gobara M; Baraka A Int J Biol Macromol; 2020 Dec; 165(Pt A):169-186. PubMed ID: 32987079 [TBL] [Abstract][Full Text] [Related]
42. Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Rajakumar G; Rahuman AA; Jayaseelan C; Santhoshkumar T; Marimuthu S; Kamaraj C; Bagavan A; Zahir AA; Kirthi AV; Elango G; Arora P; Karthikeyan R; Manikandan S; Jose S Parasitol Res; 2014 Feb; 113(2):469-79. PubMed ID: 24265057 [TBL] [Abstract][Full Text] [Related]
43. Co-precipitation synthesis and characterization of Co doped SnO Nasir Z; Shakir M; Wahab R; Shoeb M; Alam P; Khan RH; Mobin M; Lutfullah Int J Biol Macromol; 2017 Jan; 94(Pt A):554-565. PubMed ID: 27771412 [TBL] [Abstract][Full Text] [Related]
44. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. M S; K B; M B; S J; S A; A S; P N; R S J Photochem Photobiol B; 2017 Jun; 171():117-124. PubMed ID: 28501689 [TBL] [Abstract][Full Text] [Related]
45. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. Banerjee SL; Khamrai M; Sarkar K; Singha NK; Kundu PP Int J Biol Macromol; 2016 Apr; 85():157-67. PubMed ID: 26724687 [TBL] [Abstract][Full Text] [Related]
46. Anti-proliferative, apoptotic potential of synthesized selenium nanoparticles against breast cancer cell line (MCF7). Soltani L; Darbemamieh M Nucleosides Nucleotides Nucleic Acids; 2021; 40(9):926-941. PubMed ID: 34396908 [TBL] [Abstract][Full Text] [Related]
47. Biogenic Synthesis of Copper Nanoparticles Using Bacterial Strains Isolated from an Antarctic Consortium Associated to a Psychrophilic Marine Ciliate: Characterization and Potential Application as Antimicrobial Agents. John MS; Nagoth JA; Zannotti M; Giovannetti R; Mancini A; Ramasamy KP; Miceli C; Pucciarelli S Mar Drugs; 2021 May; 19(5):. PubMed ID: 34066868 [TBL] [Abstract][Full Text] [Related]
48. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166 [TBL] [Abstract][Full Text] [Related]
49. Biosynthesis and Anti-inflammatory Activity of Zinc Oxide Nanoparticles Using Leaf Extract of Zahoor S; Sheraz S; Shams DF; Rehman G; Nayab S; Shah MIA; Ateeq M; Shah SK; Ahmad T; Shams S; Khan W Biomed Res Int; 2023; 2023():3280708. PubMed ID: 37082193 [TBL] [Abstract][Full Text] [Related]
51. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. da Silva Ferreira V; ConzFerreira ME; Lima LM; Frasés S; de Souza W; Sant'Anna C Enzyme Microb Technol; 2017 Feb; 97():114-121. PubMed ID: 28010768 [TBL] [Abstract][Full Text] [Related]
52. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Rajakumar G; Rahuman AA; Chung IM; Kirthi AV; Marimuthu S; Anbarasan K Parasitol Res; 2015 Apr; 114(4):1397-406. PubMed ID: 25653029 [TBL] [Abstract][Full Text] [Related]
54. Cytotoxic and Antimicrobial Efficacy of Silver Nanoparticles Synthesized Using a Traditional Phytoproduct, Asafoetida Gum. Devanesan S; Ponmurugan K; AlSalhi MS; Al-Dhabi NA Int J Nanomedicine; 2020; 15():4351-4362. PubMed ID: 32606682 [TBL] [Abstract][Full Text] [Related]
55. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Kasithevar M; Periakaruppan P; Muthupandian S; Mohan M Microb Pathog; 2017 Jun; 107():327-334. PubMed ID: 28411059 [TBL] [Abstract][Full Text] [Related]
56. Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities. Iqbal J; Abbasi BA; Munir A; Uddin S; Kanwal S; Mahmood T Microsc Res Tech; 2020 Jun; 83(6):706-719. PubMed ID: 32170794 [TBL] [Abstract][Full Text] [Related]
57. Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules. Joshi SM; De Britto S; Jogaiah S; Ito SI Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466286 [TBL] [Abstract][Full Text] [Related]
58. Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications. Kumari P; Chandran P; Khan SS J Photochem Photobiol B; 2014 Dec; 141():235-40. PubMed ID: 25463672 [TBL] [Abstract][Full Text] [Related]
59. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Wang L; Wu Y; Xie J; Wu S; Wu Z Mater Sci Eng C Mater Biol Appl; 2018 May; 86():1-8. PubMed ID: 29525084 [TBL] [Abstract][Full Text] [Related]
60. Soil Fungi as Biomediator in Silver Nanoparticles Formation and Antimicrobial Efficacy. Sonbol H; Mohammed AE; Korany SM Int J Nanomedicine; 2022; 17():2843-2863. PubMed ID: 35795079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]