These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37563325)

  • 1. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution.
    Park S; Liu L; Demirkır Ç; van der Heijden O; Lohse D; Krug D; Koper MTM
    Nat Chem; 2023 Nov; 15(11):1532-1540. PubMed ID: 37563325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics.
    Bashkatov A; Park S; Demirkır Ç; Wood JA; Koper MTM; Lohse D; Krug D
    J Am Chem Soc; 2024 Apr; 146(14):10177-10186. PubMed ID: 38538570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marangoni convection at electrogenerated hydrogen bubbles.
    Yang X; Baczyzmalski D; Cierpka C; Mutschke G; Eckert K
    Phys Chem Chem Phys; 2018 May; 20(17):11542-11548. PubMed ID: 29651493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble formation at a gas-evolving microelectrode.
    Fernández D; Maurer P; Martine M; Coey JM; Möbius ME
    Langmuir; 2014 Nov; 30(43):13065-74. PubMed ID: 24694174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.
    Yang X; Karnbach F; Uhlemann M; Odenbach S; Eckert K
    Langmuir; 2015 Jul; 31(29):8184-93. PubMed ID: 26133052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solutal Marangoni force controls lateral motion of electrolytic gas bubbles.
    Zhang H; Ma Y; Huang M; Mutschke G; Zhang X
    Soft Matter; 2024 Apr; 20(14):3097-3106. PubMed ID: 38333960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of tetraalkylammonium cations on gas coalescence at a hydrogen-evolving microelectrode.
    Monzon LM; Gillen AJ; Mobius ME; Coey JM
    Langmuir; 2015 Jun; 31(21):5738-47. PubMed ID: 25970227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Tension of Aqueous Solutions of Electrolytes: Relationship with Ion Hydration, Oxygen Solubility, and Bubble Coalescence.
    Weissenborn PK; Pugh RJ
    J Colloid Interface Sci; 1996 Dec; 184(2):550-63. PubMed ID: 8978559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth characteristics and the mass transfer mechanism of single bubble on a photoelectrode at different electrolyte concentrations.
    Wang M; Xu Q; Nie T; Luo X; She Y; Guo L
    Phys Chem Chem Phys; 2023 Oct; 25(41):28497-28509. PubMed ID: 37847077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy.
    Liu Y; Lu X; Peng Y; Chen Q
    Anal Chem; 2021 Sep; 93(36):12337-12345. PubMed ID: 34460230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of subatmospheric pressure on bubble evolution on the TiO
    Luo X; Xu Q; Nie T; She Y; Ye X; Guo L
    Phys Chem Chem Phys; 2023 Jun; 25(23):16086-16104. PubMed ID: 37278317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Coalescing Bubbles Depart from a Wall.
    Iwata R; Zhang L; Lu Z; Gong S; Du J; Wang EN
    Langmuir; 2022 Apr; 38(14):4371-4377. PubMed ID: 35349299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The surface potential explains ion specific bubble coalescence inhibition.
    Duignan TT
    J Colloid Interface Sci; 2021 Oct; 600():338-343. PubMed ID: 34030005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-Specific Bubble Coalescence Dynamics in Electrolyte Solutions.
    Palliyalil AC; Mohan A; Dash S; Tomar G
    Langmuir; 2024 Jan; 40(1):1035-1045. PubMed ID: 38134361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Mesh Interface Engineering: Insights from Bubble Dynamics in Electrocatalysis.
    Li L; Jiang W; Zhang G; Feng D; Zhang C; Yao W; Wang Z
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45346-45354. PubMed ID: 34521191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of single hydrogen bubbles at Pt microelectrodes in microgravity.
    Bashkatov A; Yang X; Mutschke G; Fritzsche B; Hossain SS; Eckert K
    Phys Chem Chem Phys; 2021 May; 23(20):11818-11830. PubMed ID: 33988200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization and Quantification of Electrochemical H
    Liu Y; Jin C; Liu Y; Ruiz KH; Ren H; Fan Y; White HS; Chen Q
    ACS Sens; 2021 Feb; 6(2):355-363. PubMed ID: 32449344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Mass Transfer Rate in Electrocatalytic Hydrogen Evolution Achieved with Efficient Quasi-Gas Phase System.
    Xie D; Ding LX; Chen S; Chen GF; Cheng H; Wang H
    Angew Chem Int Ed Engl; 2024 Sep; ():e202414493. PubMed ID: 39245630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Description of Bubble Formation in Response to Electrolyte Engineering.
    Qiu H; Obata K; Yuan Z; Nishimoto T; Lee Y; Nagato K; Kinefuchi I; Shiomi J; Takanabe K
    Langmuir; 2023 Apr; 39(14):4993-5001. PubMed ID: 36989231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.