These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37563510)

  • 1. Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach.
    Singh A; Ashuli A; C NK; Dhiman N; Dubey CS; Shukla DP
    Environ Sci Pollut Res Int; 2024 Sep; 31(41):53767-53784. PubMed ID: 37563510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China).
    Wang Y; Sun D; Wen H; Zhang H; Zhang F
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria.
    Ozioko OH; Igwe O
    Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology.
    Saha A; Tripathi L; Villuri VGK; Bhardwaj A
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran.
    Eitvandi N; Sarikhani R; Derikvand S
    Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving ML-based landslide susceptibility using ensemble method for sample selection: a case study of Kangra district in Himachal Pradesh, India.
    Singh A; Dhiman N; K C N; Shukla DP
    Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39223412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble of fuzzy-analytical hierarchy process in landslide susceptibility modeling from a humid tropical region of Western Ghats, Southern India.
    Gopinath G; Jesiya N; Achu AL; Bhadran A; Surendran UP
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):41370-41387. PubMed ID: 37156952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of landslide susceptibility maps of Tripura, India using GIS and analytical hierarchy process (AHP).
    Nath NK; Gautam VK; Pande CB; Mishra LR; Raju JT; Moharir KN; Rane NL
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):7481-7497. PubMed ID: 38159190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China.
    Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landslide susceptibility assessment using the Weight of Evidence method: A case study in Xunyang area, China.
    Cao Y; Wei X; Fan W; Nan Y; Xiong W; Zhang S
    PLoS One; 2021; 16(1):e0245668. PubMed ID: 33493200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique.
    Hussain MA; Chen Z; Zheng Y; Shoaib M; Shah SU; Ali N; Afzal Z
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India.
    Das J; Saha P; Mitra R; Alam A; Kamruzzaman M
    Heliyon; 2023 May; 9(5):e16186. PubMed ID: 37234665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison.
    Huang Z; Peng L; Li S; Liu Y; Zhou S
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method.
    Arca D; Kutoğlu HŞ; Becek K
    Environ Monit Assess; 2018 Nov; 190(12):725. PubMed ID: 30430322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the influence of road construction on landslide susceptibility in Saudi Arabia's mountainous terrain: a Bayesian-optimised deep learning approach with attention mechanism and sensitivity analysis.
    Alqadhi S; Mallick J; Hang HT; Al Asmari AFS; Kumari R
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):3169-3194. PubMed ID: 38082044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method.
    Tekin S; Çan T
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa.
    Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C
    Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan.
    Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z
    PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea.
    Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S
    J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling.
    Guri PK; Ray PK; Patel RC
    Environ Monit Assess; 2015 Jun; 187(6):324. PubMed ID: 25944750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.