These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37563985)

  • 1. Hydrogen-Type Binding Sites in Carbonaceous Electrodes for Rapid Lithium Insertion.
    McGlamery D; McDaniel C; Xu W; Stadie NP
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39211-39217. PubMed ID: 37563985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization.
    Rethinasabapathy M; Bhaskaran G; Hwang SK; Ryu T; Huh YS
    Chemosphere; 2023 Sep; 336():139256. PubMed ID: 37331664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes.
    Nijamudheen A; Sarbapalli D; Hui J; Rodríguez-López J; Mendoza-Cortes JL
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19393-19401. PubMed ID: 32109048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites for Lithium-Ion Storage.
    Zhang Z; Calderon JE; Fahad S; Ju L; Antony DX; Yang Y; Kushima A; Zhai L
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9794-9803. PubMed ID: 33596037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ Raman study of lithium-ion intercalation into microcrystalline graphite.
    Sole C; Drewett NE; Hardwick LJ
    Faraday Discuss; 2014; 172():223-37. PubMed ID: 25427224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries.
    Qi X; Blizanac B; DuPasquier A; Meister P; Placke T; Oljaca M; Li J; Winter M
    Phys Chem Chem Phys; 2014 Dec; 16(46):25306-13. PubMed ID: 25335810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.
    Tian LL; Zhang MJ; Wu C; Wei Y; Zheng JX; Lin LP; Lu J; Amine K; Zhuang QC; Pan F
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26284-90. PubMed ID: 26548376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual pseudocapacitive lithium-ion storage on defective Co
    Avvaru VS; Vincent M; Fernandez IJ; Hinder SJ; Etacheri V
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35158338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner-Stress-Optimized High-Density Fe
    Shi Z; Zhang Q; Zhao L; Wang H; Zhou W
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15043-15052. PubMed ID: 32083836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Insight into Ultrafast Kinetics of Sodium Cointercalation in Few-Layer Graphitic Carbon.
    Wang J; Wang H; Zhao R; Wei Y; Kang F; Zhai D
    Nano Lett; 2022 Aug; 22(15):6359-6365. PubMed ID: 35914192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on electrochemical performance of striped, β12 and χ3 Borophene as anode materials for lithium-ion batteries.
    Karimzadeh S; Safaei B; Jen TC
    J Mol Graph Model; 2023 May; 120():108423. PubMed ID: 36731208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Pseudocapacitance-Driven CoC
    Zhou Z; Lin P; Zhao S; Jin H; Qian Y; Chen XA; Tang X; Zhang Q; Guo D; Wang S
    Small; 2022 Dec; 18(52):e2205887. PubMed ID: 36344416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO
    Kim HS; Cook JB; Lin H; Ko JS; Tolbert SH; Ozolins V; Dunn B
    Nat Mater; 2017 Apr; 16(4):454-460. PubMed ID: 27918566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.