These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37564698)

  • 1. F-actin nanostructures rearrangements and regulation are essential for SARS-CoV-2 particle production in host pulmonary cells.
    Swain J; Merida P; Rubio K; Bracquemond D; Neyret A; Aguilar-Ordoñez I; Günther S; Barreto G; Muriaux D
    iScience; 2023 Aug; 26(8):107384. PubMed ID: 37564698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles.
    Boson B; Legros V; Zhou B; Siret E; Mathieu C; Cosset FL; Lavillette D; Denolly S
    J Biol Chem; 2021; 296():100111. PubMed ID: 33229438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the F-Actin-Based Nuclear Egress Mechanism of Newly Synthesized Influenza A Virus Ribonucleoprotein Complexes by Single-Particle Tracking.
    Yu C; Wang ZG; Ma AX; Liu SL; Pang DW
    Anal Chem; 2022 Apr; 94(14):5624-5633. PubMed ID: 35357801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2.
    Prasad V; Cerikan B; Stahl Y; Kopp K; Magg V; Acosta-Rivero N; Kim H; Klein K; Funaya C; Haselmann U; Cortese M; Heigwer F; Bageritz J; Bitto D; Jargalsaikhan S; Neufeldt C; Pahmeier F; Boutros M; Yamauchi Y; Ruggieri A; Bartenschlager R
    Mol Cell; 2023 Jul; 83(14):2559-2577.e8. PubMed ID: 37421942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles.
    Gourdelier M; Swain J; Arone C; Mouttou A; Bracquemond D; Merida P; Saffarian S; Lyonnais S; Favard C; Muriaux D
    Sci Rep; 2022 Aug; 12(1):14651. PubMed ID: 36030323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secretory Vesicles Are the Principal Means of SARS-CoV-2 Egress.
    Eymieux S; Uzbekov R; Rouillé Y; Blanchard E; Hourioux C; Dubuisson J; Belouzard S; Roingeard P
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3-
    Dinda B; Dinda S; Dinda M
    Phytomed Plus; 2023 Feb; 3(1):100402. PubMed ID: 36597465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress.
    Johnston GP; Contreras EM; Dabundo J; Henderson BA; Matz KM; Ortega V; Ramirez A; Park A; Aguilar HC
    J Virol; 2017 May; 91(10):. PubMed ID: 28250132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells.
    Thomas A; Mariani-Floderer C; López-Huertas MR; Gros N; Hamard-Péron E; Favard C; Ohlmann T; Alcamí J; Muriaux D
    J Virol; 2015 Aug; 89(16):8162-81. PubMed ID: 26018170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress.
    Wilkie AR; Lawler JL; Coen DM
    mBio; 2016 Aug; 7(4):. PubMed ID: 27555312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nipah Virus-Like Particle Egress Is Modulated by Cytoskeletal and Vesicular Trafficking Pathways: a Validated Particle Proteomics Analysis.
    Johnston GP; Bradel-Tretheway B; Piehowski PD; Brewer HM; Lee BNR; Usher NT; Zamora JLR; Ortega V; Contreras EM; Teuton JR; Wendler JP; Matz KM; Adkins JN; Aguilar HC
    mSystems; 2019 Sep; 4(5):. PubMed ID: 31551400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ipomoeassin-F inhibits the
    O'Keefe S; Roboti P; Duah KB; Zong G; Schneider H; Shi WQ; High S
    bioRxiv; 2021 Jan; ():. PubMed ID: 33269350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROCK1 and LIM kinase modulate retrovirus particle release and cell-cell transmission events.
    Wen X; Ding L; Wang JJ; Qi M; Hammonds J; Chu H; Chen X; Hunter E; Spearman P
    J Virol; 2014 Jun; 88(12):6906-21. PubMed ID: 24696479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Fluorescence-Tagged SARS-CoV-2 Virus-like Particles by a Tri-Cistronic Vector Expression System for Investigating the Cellular Entry of SARS-CoV-2.
    Chang YS; Chu LW; Chen ZY; Wu JS; Su WC; Yang CJ; Ping YH; Lin CW
    Viruses; 2022 Dec; 14(12):. PubMed ID: 36560829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Structurally Conserved RNA Element within SARS-CoV-2 ORF1a RNA and S mRNA Regulates Translation in Response to Viral S Protein-Induced Signaling in Human Lung Cells.
    Basu A; Penumutchu S; Nguyen K; Mbonye U; Tolbert BS; Karn J; Komar AA; Mazumder B
    J Virol; 2022 Jan; 96(2):e0167821. PubMed ID: 34757848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Defect in Influenza A Virus Particle Assembly Specific to Primary Human Macrophages.
    Bedi S; Noda T; Kawaoka Y; Ono A
    mBio; 2018 Oct; 9(5):. PubMed ID: 30352935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ipomoeassin-F inhibits the
    O'Keefe S; Roboti P; Duah KB; Zong G; Schneider H; Shi WQ; High S
    J Cell Sci; 2021 Feb; 134(4):. PubMed ID: 33468620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of Coronavirus and SARS-CoV-2.
    Malik YA
    Malays J Pathol; 2020 Apr; 42(1):3-11. PubMed ID: 32342926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein post-translational modification in SARS-CoV-2 and host interaction.
    Cheng N; Liu M; Li W; Sun B; Liu D; Wang G; Shi J; Li L
    Front Immunol; 2022; 13():1068449. PubMed ID: 36713387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.