BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3756485)

  • 1. Acetate and fluoroacetate as possible markers for glial metabolism in vivo.
    Muir D; Berl S; Clarke DD
    Brain Res; 1986 Aug; 380(2):336-40. PubMed ID: 3756485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate.
    Hassel B; Bachelard H; Jones P; Fonnum F; Sonnewald U
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1230-8. PubMed ID: 9390655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and evaluation of ethyl [(18)F]fluoroacetate as a proradiotracer of [(18)F]fluoroacetate for the measurement of glial metabolism by PET.
    Mori T; Sun LQ; Kobayashi M; Kiyono Y; Okazawa H; Furukawa T; Kawashima H; Welch MJ; Fujibayashi Y
    Nucl Med Biol; 2009 Feb; 36(2):155-62. PubMed ID: 19217527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of acetate in rat brain neurons, astrocytes and cocultures: metabolic interactions between neurons and glia cells, monitored by NMR spectroscopy.
    Brand A; Richter-Landsberg C; Leibfritz D
    Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):645-57. PubMed ID: 9298588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of radiolabeled acetate and fluoroacetate as potential tracers of cerebral oxidative metabolism.
    Lear JL; Ackermann RF
    Metab Brain Dis; 1990 Mar; 5(1):45-56. PubMed ID: 2336049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral metabolic mapping at the cellular level with dry-mount autoradiography of [3H]2-deoxyglucose.
    Duncan GE; Stumpf WE; Pilgrim C
    Brain Res; 1987 Jan; 401(1):43-9. PubMed ID: 3815093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of fluorocitrate and fluoroacetate in the study of brain metabolism.
    Fonnum F; Johnsen A; Hassel B
    Glia; 1997 Sep; 21(1):106-13. PubMed ID: 9298853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of neuronal/glial relationships.
    Bachelard H
    Dev Neurosci; 1998; 20(4-5):277-88. PubMed ID: 9778563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of fluoroacetate inhibition by vitamin B12 in a strain of Escherichia coli.
    OTTEY LJ; DANIEL LJ
    Proc Soc Exp Biol Med; 1955 Nov; 90(2):432-4. PubMed ID: 13273471
    [No Abstract]   [Full Text] [Related]  

  • 10. Incorporation of [3H]leucine into hypothalamic nerve and glial cells. A comparison by EM autoradiography.
    Reisert I; Pilgrim C; Venedey C
    Brain Res; 1979 Aug; 172(3):521-32. PubMed ID: 476494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-aminobutyrate.
    Clarke DD; Nicklas WJ; Berl S
    Biochem J; 1970 Nov; 120(2):345-51. PubMed ID: 5493856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glial-neuronal-glial communication system in the mammalian central nervous system.
    Berkley KJ; Contos N
    Brain Res; 1987 Jun; 414(1):49-67. PubMed ID: 2441801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-supported oxidative metabolism and evoked potentials are sensitive to fluoroacetate, an inhibitor of glial tricarboxylic acid cycle in the olfactory cortex slice.
    Saito T
    Brain Res; 1990 Dec; 535(2):205-13. PubMed ID: 2073603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolism of fluoroacetate by plants.
    Ward PF; Huskisson NS
    Biochem J; 1969 Jun; 113(2):9P. PubMed ID: 5808328
    [No Abstract]   [Full Text] [Related]  

  • 15. Fluoroacetate and fluorocitrate: mechanism of action.
    Clarke DD
    Neurochem Res; 1991 Sep; 16(9):1055-8. PubMed ID: 1784332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular compartmentation of brain metabolism and its functional significance.
    Rose SP
    J Neurosci Res; 1975; 1(1):19-30. PubMed ID: 1223317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the autoradiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in rat brain.
    Thurlow RJ; Hill DR; Woodruff GN
    Br J Pharmacol; 1996 Jun; 118(3):457-65. PubMed ID: 8762065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reutilization of 3H-DNA metabolites by proliferating glial and endothelial cells in the brain of the 14-day-old rat.
    Korr H; Wittmann B; Schultze B
    Acta Histochem Suppl; 1984; 29():159-64. PubMed ID: 6425922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of [14C]phenylacetate as a prototype tracer for the measurement of glial metabolism in the rat brain.
    Inoue O; Hosoi R; Momosaki S; Yamamoto K; Amitani M; Yamaguchi M; Gee A
    Nucl Med Biol; 2006 Nov; 33(8):985-9. PubMed ID: 17127171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkable increase in 14C-acetate uptake in an epilepsy model rat brain induced by lithium-pilocarpine.
    Hosoi R; Kitano D; Momosaki S; Kuse K; Gee A; Inoue O
    Brain Res; 2010 Jan; 1311():158-65. PubMed ID: 19909730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.