These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37565031)

  • 21. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice.
    Gretenkord S; Kostka JK; Hartung H; Watznauer K; Fleck D; Minier-Toribio A; Spehr M; Hanganu-Opatz IL
    PLoS Biol; 2019 Jan; 17(1):e2006994. PubMed ID: 30703080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ablation of microRNAs in VIP
    Wu J; Liu P; Mao X; Qiu F; Gong L; Wu J; Wang D; He M; Li A
    Acta Physiol (Oxf); 2022 Feb; 234(2):e13767. PubMed ID: 34981885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms and functions of respiration-driven gamma oscillations in the primary olfactory cortex.
    Gonzalez J; Torterolo P; Tort ABL
    Elife; 2023 Feb; 12():. PubMed ID: 36806332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb.
    Phillips ME; Sachdev RN; Willhite DC; Shepherd GM
    J Neurosci; 2012 Jan; 32(1):85-98. PubMed ID: 22219272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period.
    Oruro EM; Pardo GVE; Lucion AB; Calcagnotto ME; Idiart MAP
    Learn Mem; 2020 Dec; 27(12):493-502. PubMed ID: 33199474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiological Recordings from Identified Cell Types in the Olfactory Cortex of Awake Mice.
    Bolding KA; Franks KM
    Methods Mol Biol; 2023; 2710():209-221. PubMed ID: 37688735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distributed circuit within the piriform cortex makes odor discrimination robust.
    Srinivasan S; Stevens CF
    J Comp Neurol; 2018 Dec; 526(17):2725-2743. PubMed ID: 30014545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Network Dynamics in the Developing Piriform Cortex of Unanesthetized Rats.
    Zhang Z; Collins DC; Maier JX
    Cereb Cortex; 2021 Jan; 31(2):1334-1346. PubMed ID: 33063095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.
    Mouly AM; Di Scala G
    Neuroscience; 2006; 137(4):1131-41. PubMed ID: 16325349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period.
    Golovin RM; Vest J; Broadie K
    J Neurosci; 2021 Feb; 41(6):1218-1241. PubMed ID: 33402421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs.
    Aimino MA; DePew AT; Restrepo L; Mosca TJ
    J Neurosci; 2023 Jan; 43(1):28-55. PubMed ID: 36446587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Associative synaptic potentials in the piriform cortex of the isolated guinea-pig brain in vitro.
    Biella G; de Curtis M
    Eur J Neurosci; 1995 Jan; 7(1):54-64. PubMed ID: 7711937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
    Frederick DE; Brown A; Brim E; Mehta N; Vujovic M; Kay LM
    J Neurosci; 2016 Jul; 36(29):7750-67. PubMed ID: 27445151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats.
    Oruro EM; Pardo GVE; Lucion AB; Calcagnotto ME; Idiart MAP
    Learn Mem; 2020 Jan; 27(1):20-32. PubMed ID: 31843979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Olfactory networks: from sensation to perception.
    Leinwand SG; Chalasani SH
    Curr Opin Genet Dev; 2011 Dec; 21(6):806-11. PubMed ID: 21889328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
    Fletcher ML; Smith AM; Best AR; Wilson DA
    J Neurosci; 2005 Jan; 25(4):792-8. PubMed ID: 15673658
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.