These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37565193)

  • 1. Delayed Antarctic melt season reduces albedo feedback.
    Liang L; Guo H; Liang S; Li X; Moore JC; Li X; Cheng X; Wu W; Liu Y; Rinke A; Jia G; Pan F; Gong C
    Natl Sci Rev; 2023 Sep; 10(9):nwad157. PubMed ID: 37565193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes.
    Smith B; Fricker HA; Gardner AS; Medley B; Nilsson J; Paolo FS; Holschuh N; Adusumilli S; Brunt K; Csatho B; Harbeck K; Markus T; Neumann T; Siegfried MR; Zwally HJ
    Science; 2020 Jun; 368(6496):1239-1242. PubMed ID: 32354841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change and variability in Antarctic coastal exposure, 1979-2020.
    Reid PA; Massom RA
    Nat Commun; 2022 Mar; 13(1):1164. PubMed ID: 35246526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of double-diffusive convection in basal melting of Antarctic ice shelves.
    Rosevear MG; Gayen B; Galton-Fenzi BK
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric Warming Drives Growth in Arctic Sea Ice: A Key Role for Snow.
    Bigdeli A; Nguyen AT; Pillar HR; Ocaña V; Heimbach P
    Geophys Res Lett; 2020 Oct; 47(20):e2020GL090236. PubMed ID: 33281242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the temporal-spatial changes in surface radiation budget over the Antarctic sea ice region.
    Zhang T; Zhou C; Zheng L
    Sci Total Environ; 2019 May; 666():1134-1150. PubMed ID: 30970479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves.
    Adusumilli S; Fricker HA; Medley B; Padman L; Siegfried MR
    Nat Geosci; 2020 Sep; 13(9):616-620. PubMed ID: 32952606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.
    Hofer S; Tedstone AJ; Fettweis X; Bamber JL
    Sci Adv; 2017 Jun; 3(6):e1700584. PubMed ID: 28782014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.
    Serreze MC; Meier WN
    Ann N Y Acad Sci; 2019 Jan; 1436(1):36-53. PubMed ID: 29806697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional variability in sea ice melt in a changing Arctic.
    Perovich DK; Richter-Menge JA
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive microwave Arctic sea ice melt onset dates from the advanced horizontal range algorithm 1979-2022.
    Bliss AC
    Sci Data; 2023 Dec; 10(1):857. PubMed ID: 38040706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne Observations of Summer Thinning of Multiyear Sea Ice Originating From the Lincoln Sea.
    Lange BA; Beckers JF; Casey JA; Haas C
    J Geophys Res Oceans; 2019 Jan; 124(1):243-266. PubMed ID: 31007996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.
    Holland MM; Landrum L
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended ozone depletion and reduced snow and ice cover-Consequences for Antarctic biota.
    Robinson SA; Revell LE; Mackenzie R; Ossola R
    Glob Chang Biol; 2024 Apr; 30(4):e17283. PubMed ID: 38663017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean.
    Huang S; Wang F; Yuan T; Song Z; Wu P; Zhang Y
    Environ Sci Technol; 2023 Oct; 57(39):14589-14601. PubMed ID: 37585923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources, evolution and impacts of EC and OC in snow on sea ice: a measurement study in Barrow, Alaska.
    Dou T; Xiao C; Du Z; Schauer JJ; Ren H; Ge B; Xie A; Tan J; Fu P; Zhang Y
    Sci Bull (Beijing); 2017 Nov; 62(22):1547-1554. PubMed ID: 36659433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet.
    Williamson CJ; Cook J; Tedstone A; Yallop M; McCutcheon J; Poniecka E; Campbell D; Irvine-Fynn T; McQuaid J; Tranter M; Perkins R; Anesio A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5694-5705. PubMed ID: 32094168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive Trend in the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature.
    Comiso JC; Gersten RA; Stock LV; Turner J; Perez GJ; Cho K
    J Clim; 2017 Mar; 30(6):2251-2267. PubMed ID: 32699487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.
    Keegan KM; Albert MR; McConnell JR; Baker I
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7964-7. PubMed ID: 24843158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.