These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37565203)

  • 1. Pathways toward wearable and high-performance sensors based on hydrogels: toughening networks and conductive networks.
    Zhu J; Tao J; Yan W; Song W
    Natl Sci Rev; 2023 Sep; 10(9):nwad180. PubMed ID: 37565203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.
    Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J
    ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors.
    Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H
    J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: A mini review.
    Wang Y; Liu H; Ji X; Wang Q; Tian Z; Liu S
    Int J Biol Macromol; 2022 Jul; 212():393-401. PubMed ID: 35618087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors.
    Mo F; Zhou P; Lin S; Zhong J; Wang Y
    Adv Healthc Mater; 2024 Jun; ():e2401503. PubMed ID: 38857480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors.
    Rahmani P; Shojaei A
    Adv Colloid Interface Sci; 2021 Dec; 298():102553. PubMed ID: 34768136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications.
    Su G; Yin S; Guo Y; Zhao F; Guo Q; Zhang X; Zhou T; Yu G
    Mater Horiz; 2021 Jun; 8(6):1795-1804. PubMed ID: 34846508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Healable Conductive Hydrogels with High Stretchability and Ultralow Hysteresis for Soft Electronics.
    Prameswati A; Nurmaulia Entifar SA; Han JW; Wibowo AF; Kim JH; Sembiring YSB; Park J; Lee J; Lee AY; Song MH; Kim S; Lim DC; Eom Y; Heo S; Moon MW; Kim MS; Kim YH
    ACS Appl Mater Interfaces; 2023 May; 15(20):24648-24657. PubMed ID: 37170066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor.
    Zheng H; Lin N; He Y; Zuo B
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional conductive hydrogels and their applications as smart wearable devices.
    Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J
    J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.
    Zhang X; Chen J; He J; Bai Y; Zeng H
    J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors.
    Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J
    Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in MXene Hydrogel for Wearable Electronics.
    Ren Y; He Q; Xu T; Zhang W; Peng Z; Meng B
    Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.
    Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F
    Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors.
    Cao J; Wu B; Yuan P; Liu Y; Hu C
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors.
    Zeng Z; Yu S; Guo C; Lu D; Geng Z; Pei D
    Macromol Rapid Commun; 2022 Aug; 43(15):e2200103. PubMed ID: 35319127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performing Conductive Hydrogels for Wearable Applications.
    Omidian H; Chowdhury SD
    Gels; 2023 Jul; 9(7):. PubMed ID: 37504428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications.
    Du Y; Du W; Lin D; Ai M; Li S; Zhang L
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.