These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3756534)

  • 1. The effects of neonatal monocular enucleation on the organization of ipsilateral and contralateral retinothalamic projections in the rabbit.
    Grigonis AM; Pearson HE; Murphy EH
    Brain Res; 1986 Sep; 394(1):9-19. PubMed ID: 3756534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of ablation of visual cortex in neonatal rabbits on the organization of retinothalamic and retinopretectal projections.
    Murphy EH; Grigonis AM; Hayden TE; Tashayyod D; Wilkes M
    Brain Res; 1988 Jan; 466(1):27-35. PubMed ID: 3342329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis.
    Kennard C
    J Embryol Exp Morphol; 1981 Oct; 65():199-217. PubMed ID: 7334300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of very early monocular and binocular enucleation on primary visual centers in the tammar wallaby (Macropus eugenii).
    Marotte LR; Flett DL; Mark RF
    J Comp Neurol; 1989 Apr; 282(4):535-54. PubMed ID: 2723151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinogeniculate projections in the rabbit: an autoradiographic study.
    Takahashi ES; Hickey TL; Oyster CW
    J Comp Neurol; 1977 Sep; 175(1):1-12. PubMed ID: 886023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The normal and abnormal postnatal development of retinogeniculate projections in golden hamsters: an anterograde horseradish peroxidase tracing study.
    So KF; Woo HH; Jen LS
    Brain Res; 1984 Feb; 314(2):191-205. PubMed ID: 6704748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Primary optic projections in the rabbit. Study using the horseradish peroxidase anterograde labeling technic].
    Gonzalo A; Arzymanow BJ; Lieberman AR
    Rev Esp Fisiol; 1985 Jun; 41(2):161-70. PubMed ID: 2412264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The postnatal development of retinocollicular projections in normal hamsters and in hamsters following neonatal monocular enucleation: a horseradish peroxidase tracing study.
    Woo HH; Jen LS; So KF
    Brain Res; 1985 May; 352(1):1-13. PubMed ID: 4005612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys.
    Ulinski PS; Nautiyal J
    J Comp Neurol; 1988 Oct; 276(1):92-112. PubMed ID: 3192765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of the crossed parabigeminotectal projection induced by neonatal eye removal in rats.
    Stevenson JA; Lund RD
    J Comp Neurol; 1982 May; 207(2):191-202. PubMed ID: 7096647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of neonatal and late unilateral enucleation on optokinetic responses and optic nerve projections in the rabbit.
    Collewijn H; Holstege G
    Exp Brain Res; 1984; 57(1):138-50. PubMed ID: 6519222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets.
    Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M
    J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the development of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine: results and speculation.
    Hoskins SG
    J Neurobiol; 1986 May; 17(3):203-29. PubMed ID: 3519864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinopretectal projections in albino and pigmented rabbits: an autoradiographic study.
    Klooster J; van der Want JJ; Vrensen G
    Brain Res; 1983 Dec; 288(1-2):1-12. PubMed ID: 6198021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ipsilateral retinocollicular projection in the rabbit: an autoradiographic study of postnatal development and effects of unilateral enucleation.
    Ostrach LH; Crabtree JW; Chow KL
    J Comp Neurol; 1986 Dec; 254(3):369-81. PubMed ID: 3794012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of cell number in the developing visual system. I. Effects of monocular enucleation.
    Finlay BL; Sengelaub DR; Berian CA
    Brain Res; 1986 Jul; 393(1):1-10. PubMed ID: 3730886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):920-9. PubMed ID: 2984359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinogeniculate projections in the rabbits of the albino allelomorphic series1.
    Sanderson KJ
    J Comp Neurol; 1975 Jan; 159(1):15-27. PubMed ID: 1109379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):930-40. PubMed ID: 2984360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.