These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37565347)

  • 1. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies.
    Ijspeert AJ; Daley MA
    J Exp Biol; 2023 Aug; 226(15):. PubMed ID: 37565347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model.
    Di Russo A; Stanev D; Sabnis A; Danner SM; Ausborn J; Armand S; Ijspeert A
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37757805
    [No Abstract]   [Full Text] [Related]  

  • 3. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-spinal cord interactions stabilize the locomotor rhythm to an external perturbation.
    Grandhe S; Abbas JJ; Jung R
    Biomed Sci Instrum; 1999; 35():175-80. PubMed ID: 11143343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation.
    Hofstoetter US; Knikou M; Guertin PA; Minassian K
    Curr Pharm Des; 2017; 23(12):1805-1820. PubMed ID: 27981912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Functional roles of spinal reflexes during human locomotor movements].
    Komiyama T
    Brain Nerve; 2010 Nov; 62(11):1129-37. PubMed ID: 21068449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor pattern generation and descending control: a historical perspective.
    Dubuc R; Cabelguen JM; Ryczko D
    J Neurophysiol; 2023 Aug; 130(2):401-416. PubMed ID: 37465884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics.
    Bicanski A; Ryczko D; Knuesel J; Harischandra N; Charrier V; Ekeberg Ö; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):545-64. PubMed ID: 23430277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics: An Introduction to the Symposium.
    Aiello BR; Gillis GB; Fox JL
    Integr Comp Biol; 2018 Nov; 58(5):827-831. PubMed ID: 30376105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed dependency in α-motoneuron activity and locomotor modules in human locomotion: indirect evidence for phylogenetically conserved spinal circuits.
    Yokoyama H; Ogawa T; Shinya M; Kawashima N; Nakazawa K
    Proc Biol Sci; 2017 Mar; 284(1851):. PubMed ID: 28356457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion.
    Song S; Geyer H
    J Physiol; 2015 Aug; 593(16):3493-511. PubMed ID: 25920414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromechanics: an integrative approach for understanding motor control.
    Nishikawa K; Biewener AA; Aerts P; Ahn AN; Chiel HJ; Daley MA; Daniel TL; Full RJ; Hale ME; Hedrick TL; Lappin AK; Nichols TR; Quinn RD; Satterlie RA; Szymik B
    Integr Comp Biol; 2007 Jul; 47(1):16-54. PubMed ID: 21672819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of movement of underwater swimmers: Animals, simulated animates and swimming robots.
    Gordleeva SY; Kastalskiy IA; Tsybina YA; Ermolaeva AV; Hramov AE; Kazantsev VB
    Phys Life Rev; 2023 Dec; 47():211-244. PubMed ID: 38072505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics.
    Ausborn J; Shevtsova NA; Danner SM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FARMS: Framework for Animal and Robot Modeling and Simulation.
    Arreguit J; Ramalingasetty ST; Ijspeert A
    bioRxiv; 2024 Mar; ():. PubMed ID: 38293071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.