BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37565378)

  • 1. Geometric Mismatch Promotes Anatomic Repair in Periorbital Bony Defects in Skeletally Mature Yucatan Minipigs.
    Singh S; Zhou Y; Farris AL; Whitehead EC; Nyberg EL; O'Sullivan AN; Zhang NY; Rindone AN; Achebe CC; Zbijewski W; Grundy W; Garlick D; Jackson ND; Kraitchman D; Izzi JM; Lopez J; Grant MP; Grayson WL
    Adv Healthc Mater; 2023 Nov; 12(29):e2301944. PubMed ID: 37565378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point-of-care treatment of geometrically complex midfacial critical-sized bone defects with 3D-Printed scaffolds and autologous stromal vascular fraction.
    Singh S; Nyberg EL; O'Sullivan AN; Farris A; Rindone AN; Zhang N; Whitehead EC; Zhou Y; Mihaly E; Achebe CC; Zbijewski W; Grundy W; Garlick D; Jackson ND; Taguchi T; Takawira C; Lopez J; Lopez MJ; Grant MP; Grayson WL
    Biomaterials; 2022 Mar; 282():121392. PubMed ID: 35134701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model.
    DeMitchell-Rodriguez EM; Shen C; Nayak VV; Tovar N; Witek L; Torroni A; Yarholar LM; Cronstein BN; Flores RL; Coelho PG
    Plast Reconstr Surg; 2023 Aug; 152(2):270e-280e. PubMed ID: 36723712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies.
    Sithole MN; Kumar P; Du Toit LC; Erlwanger KH; Ubanako PN; Choonara YE
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Model of Zygomatic and Mandibular Defects to Support the Development of Custom Three-Dimensional--Printed Bone Scaffolds.
    Mulloy C; Guidry RF; Sharma S; Prevot A; Wisecarver IR; Takawira C; Marrero L; Lopez MJ; Mundinger GS
    J Craniofac Surg; 2020; 31(5):1488-1491. PubMed ID: 32541268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds.
    Vidal L; Kampleitner C; Krissian S; Brennan MÁ; Hoffmann O; Raymond Y; Maazouz Y; Ginebra MP; Rosset P; Layrolle P
    Sci Rep; 2020 Apr; 10(1):7068. PubMed ID: 32341459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form and functional repair of long bone using 3D-printed bioactive scaffolds.
    Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG
    J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine.
    Zhao Q; Li G; Wang T; Jin Y; Lu W; Ji J
    Stem Cells Dev; 2021 May; 30(10):548-559. PubMed ID: 33736461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds.
    Witek L; Alifarag AM; Tovar N; Lopez CD; Cronstein BN; Rodriguez ED; Coelho PG
    J Orthop Res; 2019 Dec; 37(12):2499-2507. PubMed ID: 31334868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration.
    Ma L; Wang X; Zhao N; Zhu Y; Qiu Z; Li Q; Zhou Y; Lin Z; Li X; Zeng X; Xia H; Zhong S; Zhang Y; Wang Y; Mao C
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42146-42154. PubMed ID: 30507136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects.
    Eichholz KF; Freeman FE; Pitacco P; Nulty J; Ahern D; Burdis R; Browe DC; Garcia O; Hoey DA; Kelly DJ
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35947963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofabrication of SDF-1 Functionalized 3D-Printed Cell-Free Scaffolds for Bone Tissue Regeneration.
    Lauer A; Wolf P; Mehler D; Götz H; Rüzgar M; Baranowski A; Henrich D; Rommens PM; Ritz U
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascularized 3D printed scaffolds for promoting bone regeneration.
    Yan Y; Chen H; Zhang H; Guo C; Yang K; Chen K; Cheng R; Qian N; Sandler N; Zhang YS; Shen H; Qi J; Cui W; Deng L
    Biomaterials; 2019 Jan; 190-191():97-110. PubMed ID: 30415019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black Phosphorus Scaffolds for Bone Regeneration.
    Long J; Yao Z; Zhang W; Liu B; Chen K; Li L; Teng B; Du XF; Li C; Yu XF; Qin L; Lai Y
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302539. PubMed ID: 37616380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair.
    Slavin BV; Nayak VV; Boczar D; Bergamo ET; Slavin BR; Yarholar LM; Torroni A; Coelho PG; Witek L
    J Craniofac Surg; 2024 Jan-Feb 01; 35(1):261-267. PubMed ID: 37622526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.