These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37565571)

  • 1. Sustainable zinc-air battery chemistry: advances, challenges and prospects.
    Wang Q; Kaushik S; Xiao X; Xu Q
    Chem Soc Rev; 2023 Aug; 52(17):6139-6190. PubMed ID: 37565571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects.
    Lv XW; Wang Z; Lai Z; Liu Y; Ma T; Geng J; Yuan ZY
    Small; 2024 Jan; 20(4):e2306396. PubMed ID: 37712176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Flexible Zn-Air Batteries: Materials for Electrodes and Electrolytes.
    Liu H; Xie W; Huang Z; Yao C; Han Y; Huang W
    Small Methods; 2022 Jan; 6(1):e2101116. PubMed ID: 35041275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes.
    Chang J; Yang Y
    Chem Commun (Camb); 2023 May; 59(39):5823-5838. PubMed ID: 37096450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material design and surface chemistry for advanced rechargeable zinc-air batteries.
    Lee S; Choi J; Kim M; Park J; Park M; Cho J
    Chem Sci; 2022 Jun; 13(21):6159-6180. PubMed ID: 35733905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries.
    Gao Y; Liu L; Jiang Y; Yu D; Zheng X; Wang J; Liu J; Luo D; Zhang Y; Shi Z; Wang X; Deng YP; Chen Z
    Nanomicro Lett; 2024 Mar; 16(1):162. PubMed ID: 38530476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery.
    Liu X; Zhang G; Wang L; Fu H
    Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-Air Batteries.
    Zhou T; Wu X; Liu S; Wang A; Liu Y; Zhou W; Sun K; Li S; Zhou J; Li B; Jiang J
    ChemSusChem; 2024 Jul; 17(14):e202301779. PubMed ID: 38416074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries.
    Shi H; Gao S; Liu X; Wang Y; Zhou S; Liu Q; Zhang L; Hu G
    Small; 2024 Jun; 20(25):e2309557. PubMed ID: 38705855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic-self-catalysis as an accelerated air-cathode for rechargeable near-neutral Zn-air batteries with ultrahigh energy efficiency.
    Zhang T; Lim XF; Zhang S; Zheng J; Liu X; Lee JY
    Mater Horiz; 2023 Jul; 10(8):2958-2967. PubMed ID: 37166133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries.
    Chang H; Cong S; Wang L; Wang C
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries.
    Zhu Y; Yue K; Xia C; Zaman S; Yang H; Wang X; Yan Y; Xia BY
    Nanomicro Lett; 2021 Jun; 13(1):137. PubMed ID: 34138394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives.
    Dong F; Wu M; Chen Z; Liu X; Zhang G; Qiao J; Sun S
    Nanomicro Lett; 2021 Dec; 14(1):36. PubMed ID: 34918185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling-Up Insights for Zinc-Air Battery Technologies Realizing Reversible Zinc Anodes.
    Shinde SS; Wagh NK; Lee CH; Kim DH; Kim SH; Um HD; Lee SU; Lee JH
    Adv Mater; 2023 Nov; 35(48):e2303509. PubMed ID: 37752717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells.
    Li L; Tang X; Wu B; Huang B; Yuan K; Chen Y
    Adv Mater; 2024 Mar; 36(13):e2308326. PubMed ID: 37823716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries.
    Saha P; Shaheen Shah S; Ali M; Nasiruzzaman Shaikh M; Aziz MA; Saleh Ahammad AJ
    Chem Rec; 2024 Jan; 24(1):e202300216. PubMed ID: 37651034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review.
    Dias GS; Costa JM; Almeida Neto AF
    Adv Colloid Interface Sci; 2023 May; 315():102891. PubMed ID: 37058836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid-State Zinc-Air Batteries: Recent Advances, Challenges, and Future Perspectives.
    Wu M; Zhang G; Du L; Yang D; Yang H; Sun S
    Small Methods; 2021 Jan; 5(1):e2000868. PubMed ID: 34927810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.