These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 37565644)

  • 21. Fast fMRI can detect oscillatory neural activity in humans.
    Lewis LD; Setsompop K; Rosen BR; Polimeni JR
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6679-E6685. PubMed ID: 27729529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cerebrovascular Reactivity Has Negligible Contribution to Hemodynamic Lag After Stroke: Implications for Functional Magnetic Resonance Imaging Studies.
    Braban A; Leech R; Murphy K; Geranmayeh F
    Stroke; 2023 Apr; 54(4):1066-1077. PubMed ID: 36972348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal stability of the hemodynamic response function across the majority of human cerebral cortex.
    Taylor AJ; Kim JH; Ress D
    Hum Brain Mapp; 2022 Nov; 43(16):4924-4942. PubMed ID: 35965416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamic matrix factorization for functional magnetic resonance imaging.
    Hütel M; Antonelli M; Melbourne A; Ourselin S
    Neuroimage; 2021 May; 231():117814. PubMed ID: 33549748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An investigation of positive and inverted hemodynamic response functions across multiple visual areas.
    Puckett AM; Mathis JR; DeYoe EA
    Hum Brain Mapp; 2014 Nov; 35(11):5550-64. PubMed ID: 25044672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing systemic physiological effects on the blood oxygen level dependent signal of resting-state fMRI in time-frequency space using wavelets.
    Lee QN; Chen JE; Wheeler GJ; Fan AP
    Hum Brain Mapp; 2023 Dec; 44(18):6537-6551. PubMed ID: 37950750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies.
    Rangaprakash D; Dretsch MN; Yan W; Katz JS; Denney TS; Deshpande G
    Neuroimage Clin; 2017; 16():409-417. PubMed ID: 28879082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resting-state BOLD functional connectivity depends on the heterogeneity of capillary transit times in the human brain A combined lesion and simulation study about the influence of blood flow response timing.
    Schneider SC; Archila-Meléndez ME; Göttler J; Kaczmarz S; Zott B; Priller J; Kallmayer M; Zimmer C; Sorg C; Preibisch C
    Neuroimage; 2022 Jul; 255():119208. PubMed ID: 35427773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
    Stickland RC; Zvolanek KM; Moia S; Ayyagari A; Caballero-Gaudes C; Bright MG
    Neuroimage; 2021 Oct; 239():118306. PubMed ID: 34175427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. rsHRF: A toolbox for resting-state HRF estimation and deconvolution.
    Wu GR; Colenbier N; Van Den Bossche S; Clauw K; Johri A; Tandon M; Marinazzo D
    Neuroimage; 2021 Dec; 244():118591. PubMed ID: 34560269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping and correction of vascular hemodynamic latency in the BOLD signal.
    Chang C; Thomason ME; Glover GH
    Neuroimage; 2008 Oct; 43(1):90-102. PubMed ID: 18656545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BOLD hemodynamic response function changes significantly with healthy aging.
    West KL; Zuppichini MD; Turner MP; Sivakolundu DK; Zhao Y; Abdelkarim D; Spence JS; Rypma B
    Neuroimage; 2019 Mar; 188():198-207. PubMed ID: 30529628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI.
    Bazargani N; Nosratinia A
    Med Image Anal; 2014 Jul; 18(5):711-24. PubMed ID: 24835179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The temporal specificity of BOLD fMRI is systematically related to anatomical and vascular features of the human brain.
    Gomez DEP; Polimeni JR; Lewis LD
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of functional activity in brain white matter using fiber architecture informed synchrony mapping.
    Zhao Y; Gao Y; Zu Z; Li M; Schilling KG; Anderson AW; Ding Z; Gore JC
    Neuroimage; 2022 Sep; 258():119399. PubMed ID: 35724855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.