These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 37566160)

  • 1. Extracellular proteases from halophiles: diversity and application challenges.
    Nwankwo C; Hou J; Cui HL
    Appl Microbiol Biotechnol; 2023 Oct; 107(19):5923-5934. PubMed ID: 37566160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector.
    Mokashe N; Chaudhari B; Patil U
    Int J Biol Macromol; 2018 Oct; 117():493-522. PubMed ID: 29857102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel halolysin without C-terminal extension from an extremely halophilic archaeon.
    Hou J; Li SY; Zhao YJ; Cui HL
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):3009-3019. PubMed ID: 35435453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the production, properties and applications of haloextremozymes protease and lipase from haloarchaea.
    Gaonkar SK; Alvares JJ; Furtado IJ
    World J Microbiol Biotechnol; 2023 Sep; 39(11):322. PubMed ID: 37755613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.
    Huang J; Wu C; Liu D; Yang X; Wu R; Zhang J; Ma C; He H
    J Appl Microbiol; 2017 Jan; 122(1):12-22. PubMed ID: 27709728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of a low salt-adapted extracellular protease from the extremely halophilic archaeon Halococcus salifodinae.
    Hou J; Yin XM; Li Y; Han D; Lü B; Zhang JY; Cui HL
    Int J Biol Macromol; 2021 Apr; 176():253-259. PubMed ID: 33592265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of microbial proteases on biotechnological industries.
    Banerjee G; Ray AK
    Biotechnol Genet Eng Rev; 2017 Oct; 33(2):119-143. PubMed ID: 29205093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease.
    Huang Q; Zhang K; Li Y; Gan F; Tang XF; Tang B
    Appl Environ Microbiol; 2022 Nov; 88(21):e0150322. PubMed ID: 36250702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and isolation of halophilic bacteria producing industrially important enzymes.
    Kumar S; Karan R; Kapoor S; S P S; S K K
    Braz J Microbiol; 2012 Oct; 43(4):1595-603. PubMed ID: 24031991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications.
    Oren A
    J Ind Microbiol Biotechnol; 2002 Jan; 28(1):56-63. PubMed ID: 11938472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremophilic proteases as novel and efficient tools in short peptide synthesis.
    Białkowska AM; Morawski K; Florczak T
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1325-1342. PubMed ID: 28646288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloarchaeal proteases and proteolytic systems.
    De Castro RE; Maupin-Furlow JA; Giménez MI; Herrera Seitz MK; Sánchez JJ
    FEMS Microbiol Rev; 2006 Jan; 30(1):17-35. PubMed ID: 16438678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.
    Niyonzima FN; More S
    Prep Biochem Biotechnol; 2015; 45(3):233-58. PubMed ID: 24678620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.
    Lorantfy B; Seyer B; Herwig C
    N Biotechnol; 2014 Jan; 31(1):80-9. PubMed ID: 23994053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and Characterization of a Novel Extracellular Haloprotease Vpr from
    Foophow T; Sittipol D; Rukying N; Phoohinkong W; Jongruja N
    Food Technol Biotechnol; 2022 Jun; 60(2):225-236. PubMed ID: 35910276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremozymes: A Potential Source for Industrial Applications.
    Dumorné K; Córdova DC; Astorga-Eló M; Renganathan P
    J Microbiol Biotechnol; 2017 Apr; 27(4):649-659. PubMed ID: 28104900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halophilic hydrolases as a new tool for the biotechnological industries.
    Delgado-García M; Valdivia-Urdiales B; Aguilar-González CN; Contreras-Esquivel JC; Rodríguez-Herrera R
    J Sci Food Agric; 2012 Oct; 92(13):2575-80. PubMed ID: 22926924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1.
    Kamekura M; Seno Y
    Biochem Cell Biol; 1990 Jan; 68(1):352-9. PubMed ID: 2112401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools.
    Lach J; Jęcz P; Strapagiel D; Matera-Witkiewicz A; Stączek P
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impact and diversity of protease-producing bacteria in areas of leather tannery effluents of Sialkot, Pakistan.
    Butt MQ; Zeeshan N; Ashraf NM; Akhtar MA; Ashraf H; Afroz A; Shaheen A; Naz S
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):54842-54851. PubMed ID: 34021452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.