These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37566172)

  • 1. A numerical study of the effect of thrombus breakdown on predicted thrombus formation and growth.
    Wang K; Armour CH; Gibbs RGJ; Xu XY
    Biomech Model Mechanobiol; 2024 Feb; 23(1):61-71. PubMed ID: 37566172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated fluid-structure interaction and thrombosis model for type B aortic dissection.
    Chong MY; Gu B; Armour CH; Dokos S; Ong ZC; Xu XY; Lim E
    Biomech Model Mechanobiol; 2022 Feb; 21(1):261-275. PubMed ID: 35079931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refining a numerical model for device-induced thrombosis and investigating the effects of non-Newtonian blood models.
    Yang L; Tobin N; Manning KB
    J Biomech; 2021 May; 120():110393. PubMed ID: 33784516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-driven modelling of thrombus formation in type B aortic dissection.
    Jafarinia A; Armour CH; Gibbs RGJ; Xu XY; Hochrainer T
    Front Bioeng Biotechnol; 2022; 10():1033450. PubMed ID: 36394040
    [No Abstract]   [Full Text] [Related]  

  • 5. Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications.
    Menichini C; Xu XY
    J Math Biol; 2016 Nov; 73(5):1205-1226. PubMed ID: 27007280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a computational model for macroscopic predictions of device-induced thrombosis.
    Taylor JO; Meyer RS; Deutsch S; Manning KB
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1713-1731. PubMed ID: 27169403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Location of Reentry Tears Affects False Lumen Thrombosis in Aortic Dissection Following TEVAR.
    Armour CH; Menichini C; Milinis K; Gibbs RGJ; Xu XY
    J Endovasc Ther; 2020 Jun; 27(3):396-404. PubMed ID: 32364001
    [No Abstract]   [Full Text] [Related]  

  • 8. Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections.
    Yazdani A; Li H; Bersi MR; Di Achille P; Insley J; Humphrey JD; Karniadakis GE
    Sci Rep; 2018 Feb; 8(1):2515. PubMed ID: 29410467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting false lumen thrombosis in patient-specific models of aortic dissection.
    Menichini C; Cheng Z; Gibbs RG; Xu XY
    J R Soc Interface; 2016 Nov; 13(124):. PubMed ID: 27807275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses.
    Taylor JO; Witmer KP; Neuberger T; Craven BA; Meyer RS; Deutsch S; Manning KB
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24805351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle.
    Qiao Y; Luo K; Fan J
    Front Physiol; 2022; 13():867613. PubMed ID: 35547578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model for false lumen thrombosis in type B aortic dissection following thoracic endovascular repair.
    Menichini C; Cheng Z; Gibbs RGJ; Xu XY
    J Biomech; 2018 Jan; 66():36-43. PubMed ID: 29137728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum modeling of thrombus formation and growth under different shear rates.
    Rezaeimoghaddam M; van de Vosse FN
    J Biomech; 2022 Feb; 132():110915. PubMed ID: 35032838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact on hemodynamics in carotid arteries with carotid webs at different locations: A Numerical Study Integrating Thrombus Growth Model.
    Liu X; Song P; Gao Q; Dai M; Rao J; Wen J
    Comput Methods Programs Biomed; 2024 Jan; 243():107926. PubMed ID: 37984097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection.
    Cheng Z; Riga C; Chan J; Hamady M; Wood NB; Cheshire NJ; Xu Y; Gibbs RG
    J Vasc Surg; 2013 Feb; 57(2 Suppl):35S-43S. PubMed ID: 23336853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thrombus Formation at High Shear Rates.
    Casa LDC; Ku DN
    Annu Rev Biomed Eng; 2017 Jun; 19():415-433. PubMed ID: 28441034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of thrombus formation in shear flows using Lattice Boltzmann Method.
    Tamagawa M; Kaneda H; Hiramoto M; Nagahama S
    Artif Organs; 2009 Aug; 33(8):604-10. PubMed ID: 19624585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of morphological and hemodynamical indexes in abdominal aortic aneurysms as preliminary indicators of intraluminal thrombus deposition.
    Colciago CM; Deparis S; Domanin M; Riccobene C; Schenone E; Quarteroni A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1035-1053. PubMed ID: 31820279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis.
    Méndez Rojano R; Mendez S; Nicoud F
    Biomech Model Mechanobiol; 2018 Jun; 17(3):815-826. PubMed ID: 29302840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hemodynamic analysis of a new retrievable vena cava filter].
    Chen S; Feng H; Li X; Gu J; Wang X; Cao P; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):245-253. PubMed ID: 31016941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.