These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3756621)

  • 1. Gastric and duodenal motility in the cat: the role of central innervation assessed by transient vagal blockade.
    Bendeck MP; Reynolds RP
    Can J Physiol Pharmacol; 1986 Jun; 64(6):712-6. PubMed ID: 3756621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdigestive gastric motility patterns: the role of vagal and nonvagal extrinsic innervation.
    Spencer MP; Sarr MG; Hakim NS; Soper NJ
    Surgery; 1989 Aug; 106(2):185-93 discussion 193-4. PubMed ID: 2763026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective role of vagal and nonvagal innervation in initiation and coordination of gastric and small bowel patterns of interdigestive and postprandial motility.
    Tanaka T; VanKlompenberg LH; Sarr MG
    J Gastrointest Surg; 2001; 5(4):418-33. PubMed ID: 11985985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenergic blockage does not restore the canine gastric migrating motor complex during vagal blockade.
    Chung SA; Valdez DT; Diamant NE
    Gastroenterology; 1992 Nov; 103(5):1491-7. PubMed ID: 1426867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms coordinating gastric and small intestinal MMC: role of extrinsic innervation rather than motilin.
    Chung SA; Rotstein O; Greenberg GR; Diamant NE
    Am J Physiol; 1994 Nov; 267(5 Pt 1):G800-9. PubMed ID: 7977742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small intestinal motility in fasted and postprandial states: effect of transient vagosympathetic blockade.
    Chung SA; Diamant NE
    Am J Physiol; 1987 Mar; 252(3 Pt 1):G301-8. PubMed ID: 3826369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The upper esophageal sphincter in the cat: the role of central innervation assessed by transient vagal blockade.
    Reynolds RP; Effer GW; Bendeck MP
    Can J Physiol Pharmacol; 1987 Jan; 65(1):96-9. PubMed ID: 3567728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vagal influence on duodenal motor activity.
    Mir SS; Mason GR; Ormsbee HS
    Am J Surg; 1978 Jan; 135(1):97-101. PubMed ID: 623379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the vagal branches to the proximal stomach in mediating gastric distention-induced disruption of canine interdigestive upper gut motility.
    Lee J; Murr M; Foley MK; Sarr MG
    J Surg Res; 1995 Jun; 58(6):576-82. PubMed ID: 7791331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oesophageal peristalsis in the cat: the role of central innervation assessed by transient vagal blockade.
    Reynolds RP; el-Sharkawy TY; Diamant NE
    Can J Physiol Pharmacol; 1985 Feb; 63(2):122-30. PubMed ID: 3986696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vagus, the duodenal brake, and gastric emptying.
    Shahidullah M; Kennedy TL; Parks TG
    Gut; 1975 May; 16(5):331-6. PubMed ID: 1140630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxatory responses of canine proximal stomach to esophageal and duodenal distension. Importance of vagal pathways.
    De Ponti F; Azpiroz F; Malagelada JR
    Dig Dis Sci; 1989 Jun; 34(6):873-81. PubMed ID: 2566456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal innervation modulates motor pattern but not initiation of canine gastric migrating motor complex.
    Tanaka T; Kendrick ML; Zyromski NJ; Meile T; Sarr MG
    Am J Physiol Gastrointest Liver Physiol; 2001 Jul; 281(1):G283-92. PubMed ID: 11408282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat.
    Schwartz GJ; Moran TH
    Am J Physiol; 1998 May; 274(5):R1236-42. PubMed ID: 9644035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jejunal regulation of gastric motility patterns: effect of extrinsic neural continuity to stomach.
    Spencer MP; Sarr MG; Soper NJ; Hakim NS
    Am J Physiol; 1990 Jan; 258(1 Pt 1):G32-7. PubMed ID: 2301581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal control of canine postprandial upper gastrointestinal motility.
    Hall KE; el-Sharkawy TY; Diamant NE
    Am J Physiol; 1986 Apr; 250(4 Pt 1):G501-10. PubMed ID: 3963195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythromycin gastrokinetic activity is partially vagally mediated.
    Mathis C; Malbert CH
    Am J Physiol; 1998 Jan; 274(1):G80-6. PubMed ID: 9458776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canine cyclic motor activity of stomach and small bowel: the vagus is not the governor.
    Gleysteen JJ; Sarna SK; Myrvik AL
    Gastroenterology; 1985 Jun; 88(6):1926-31. PubMed ID: 3996845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of proximal gastric vagotomy (PGV) followed by total vagotomy (TV) on postprandial and fasting myoelectrical activity of the canine stomach and duodenum.
    Aeberhard P; Bedi BS
    Gut; 1977 Jul; 18(7):515-23. PubMed ID: 873332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Interdigestive contractile characteristics of canine pylorus and gastroduodenal regions].
    Suzuki E
    J Smooth Muscle Res; 1991 Jun; 27(3):139-47. PubMed ID: 1840867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.