These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37566839)

  • 1. Activity-Driven Phase Transition Causes Coherent Flows of Chromatin.
    Eshghi I; Zidovska A; Grosberg AY
    Phys Rev Lett; 2023 Jul; 131(4):048401. PubMed ID: 37566839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensile motor activity drives coherent motions in a model of interphase chromatin.
    Saintillan D; Shelley MJ; Zidovska A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11442-11447. PubMed ID: 30348795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry-based classification of forces driving chromatin dynamics.
    Eshghi I; Zidovska A; Grosberg AY
    Soft Matter; 2022 Nov; 18(42):8134-8146. PubMed ID: 36239271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere.
    Eshghi I; Zidovska A; Grosberg AY
    Eur Phys J E Soft Matter; 2023 Aug; 46(8):69. PubMed ID: 37540478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent polaron dynamics of electrons solvated in polar liquids.
    Singh P; Zhang J; Ghalgaoui A; Reimann K; Fingerhut BP; Woerner M; Elsaesser T
    PNAS Nexus; 2022 Jul; 1(3):pgac078. PubMed ID: 36741462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-equilibrium effects of molecular motors on polymers.
    Foglino M; Locatelli E; Brackley CA; Michieletto D; Likos CN; Marenduzzo D
    Soft Matter; 2019 Jul; 15(29):5995-6005. PubMed ID: 31292585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micron-scale coherence in interphase chromatin dynamics.
    Zidovska A; Weitz DA; Mitchison TJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15555-60. PubMed ID: 24019504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial organization of chromosomes leads to heterogeneous chromatin motion and drives the liquid- or gel-like dynamical behavior of chromatin.
    Salari H; Di Stefano M; Jost D
    Genome Res; 2022 Jan; 32(1):28-43. PubMed ID: 34963660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay of chromatin phase separation and lamina interactions in nuclear organization.
    Laghmach R; Di Pierro M; Potoyan DA
    Biophys J; 2021 Nov; 120(22):5005-5017. PubMed ID: 34653387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion.
    Barth R; Shaban HA
    Nucleus; 2022 Dec; 13(1):194-202. PubMed ID: 35723020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase Separation and Correlated Motions in Motorized Genome.
    Jiang Z; Qi Y; Kamat K; Zhang B
    J Phys Chem B; 2022 Aug; 126(30):5619-5628. PubMed ID: 35858189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-chromosome dynamics reveals locus-dependent dynamics and chromosome territory orientation.
    Chung YC; Bisht M; Thuma J; Tu LC
    J Cell Sci; 2023 Feb; 136(4):. PubMed ID: 36718642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Structures in Plane Channel Flow of Dilute Polymer Solutions with Vanishing Inertia.
    Morozov A
    Phys Rev Lett; 2022 Jul; 129(1):017801. PubMed ID: 35841580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent coarse-graining strategy for polymer solutions in the thermal crossover from good to θ solvent.
    D'Adamo G; Pelissetto A; Pierleoni C
    J Chem Phys; 2013 Jul; 139(3):034901. PubMed ID: 23883051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective solvent flows around a protein investigated by molecular dynamics simulation.
    Umezawa K; Higo J; Shimotakahara S; Shindo H
    J Chem Phys; 2007 Jul; 127(4):045101. PubMed ID: 17672724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Nuclear Structure Emerges from Chromatin Cross-Links and Motors.
    Liu K; Patteson AE; Banigan EJ; Schwarz JM
    Phys Rev Lett; 2021 Apr; 126(15):158101. PubMed ID: 33929233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.