BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37566981)

  • 1. A study of the properties of hemicelluloses adsorbed onto microfibrillar cellulose isolated from apple parenchyma.
    Szymańska-Chargot M; Pękala P; Myśliwiec D; Cieśla J; Pieczywek PM; Siemińska-Kuczer A; Zdunek A
    Food Chem; 2024 Jan; 430():137116. PubMed ID: 37566981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the contribution of cell wall polysaccharides to the mechanical properties of apple parenchyma tissue using exogenous enzymes.
    Videcoq P; Barbacci A; Assor C; Magnenet V; Arnould O; Le Gall S; Lahaye M
    J Exp Bot; 2017 Nov; 68(18):5137-5146. PubMed ID: 29036637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pectin and hemicelluloses on physical properties of bacterial cellulose.
    Cybulska J; Cieśla J; Kurzyna-Szklarek M; Szymańska-Chargot M; Pieczywek PM; Zdunek A
    Food Chem; 2023 Dec; 429():136996. PubMed ID: 37506661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.
    Szymańska-Chargot M; Cybulska J; Zdunek A
    Sensors (Basel); 2011; 11(6):5543-60. PubMed ID: 22163913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: Effects of variety, heating and drying.
    Liu D; Lopez-Sanchez P; Martinez-Sanz M; Gilbert EP; Gidley MJ
    Food Chem; 2019 Jun; 282():58-66. PubMed ID: 30711106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides.
    Le Bourvellec C; Bouchet B; Renard CM
    Biochim Biophys Acta; 2005 Aug; 1725(1):10-8. PubMed ID: 16023787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of plant matrix polysaccharides on cellulose produced by surface-tethered cellulose synthases.
    Basu S; Omadjela O; Zimmer J; Catchmark JM
    Carbohydr Polym; 2017 Apr; 162():93-99. PubMed ID: 28224899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.
    Lopez-Sanchez P; Schuster E; Wang D; Gidley MJ; Strom A
    Soft Matter; 2015 May; 11(20):4002-10. PubMed ID: 25898947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation.
    Mikkelsen D; Lopez-Sanchez P; Wang D; Gidley MJ
    Methods Mol Biol; 2020; 2149():73-87. PubMed ID: 32617930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained molecular dynamics model to evaluate the mechanical properties of bacterial cellulose-hemicellulose composites.
    Chibrikov V; Pieczywek PM; Cybulska J; Zdunek A
    Carbohydr Polym; 2024 Apr; 330():121827. PubMed ID: 38368106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides.
    Liu X; Renard CMGC; Bureau S; Le Bourvellec C
    Carbohydr Polym; 2021 Jun; 262():117935. PubMed ID: 33838812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression.
    Lopez-Sanchez P; Cersosimo J; Wang D; Flanagan B; Stokes JR; Gidley MJ
    PLoS One; 2015; 10(3):e0122132. PubMed ID: 25794048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition of plant cell walls.
    Heredia A; Jiménez A; Guillén R
    Z Lebensm Unters Forsch; 1995; 200(1):24-31. PubMed ID: 7732730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the contributions of hemicelluloses to assembly and mechanical properties of cellulose networks.
    Zhang W; Yang J; Lu Y; Li M; Peng F; Bian J
    Carbohydr Polym; 2023 Feb; 301(Pt A):120292. PubMed ID: 36436850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence.
    Szymańska-Chargot M; Chylińska M; Pieczywek PM; Rösch P; Schmitt M; Popp J; Zdunek A
    Planta; 2016 Apr; 243(4):935-45. PubMed ID: 26733465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus.
    Xiao MZ; Chen WJ; Cao XF; Chen YY; Zhao BC; Jiang ZH; Yuan TQ; Sun RC
    Carbohydr Polym; 2020 Jun; 238():116212. PubMed ID: 32299557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses.
    Szymańska-Chargot M; Chylińska M; Pieczywek PM; Zdunek A
    Carbohydr Polym; 2019 Apr; 210():186-195. PubMed ID: 30732753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties.
    Lahaye M; Falourd X; Laillet B; Le Gall S
    Carbohydr Polym; 2020 Mar; 232():115768. PubMed ID: 31952582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.
    Fasoli M; Dell'Anna R; Dal Santo S; Balestrini R; Sanson A; Pezzotti M; Monti F; Zenoni S
    Plant Cell Physiol; 2016 Jun; 57(6):1332-49. PubMed ID: 27095736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.