These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37566997)

  • 1. Singleton effect decreases under time pressure: An fNIRS study.
    Li Y; Wang S; Shan Q; Xia X
    Brain Cogn; 2023 Oct; 171():106074. PubMed ID: 37566997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Top-Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture.
    Bertleff S; Fink GR; Weidner R
    J Cogn Neurosci; 2016 Aug; 28(8):1152-65. PubMed ID: 27054402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.
    Wijayasiri P; Hartley DEH; Wiggins IM
    Hear Res; 2017 Aug; 351():55-67. PubMed ID: 28571617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies.
    Chen X; Xu B; Chen Y; Zeng X; Zhang Y; Fu S
    Psychophysiology; 2023 Aug; 60(8):e14290. PubMed ID: 36946491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of frontal cortex in attentional capture by singleton distractors.
    de Fockert JW; Theeuwes J
    Brain Cogn; 2012 Dec; 80(3):367-73. PubMed ID: 22959916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-related dysfunction of the right inferior frontal cortex in high ruminators: An fNIRS study.
    Rosenbaum D; Thomas M; Hilsendegen P; Metzger FG; Haeussinger FB; Nuerk HC; Fallgatter AJ; Nieratschker V; Ehlis AC
    Neuroimage Clin; 2018; 18():510-517. PubMed ID: 29560307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of attentional capture in visual search.
    de Fockert J; Rees G; Frith C; Lavie N
    J Cogn Neurosci; 2004 Jun; 16(5):751-9. PubMed ID: 15200703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurophysiological correlates of the attention training technique: A component study.
    Rosenbaum D; Maier MJ; Hudak J; Metzger FG; Wells A; Fallgatter AJ; Ehlis AC
    Neuroimage Clin; 2018; 19():1018-1024. PubMed ID: 30003039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The visual hemifield asymmetry in the spatial blink during singleton search and feature search.
    Burnham BR; Rozell CA; Kasper A; Bianco NE; Delliturri A
    Brain Cogn; 2011 Apr; 75(3):261-72. PubMed ID: 21295901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional capture by salient color singleton distractors is modulated by top-down dimensional set.
    Müller HJ; Geyer T; Zehetleitner M; Krummenacher J
    J Exp Psychol Hum Percept Perform; 2009 Feb; 35(1):1-16. PubMed ID: 19170466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural substrates associated with attentional resources and difficulty of concurrent processing of the two verbal tasks.
    Mizuno K; Tanaka M; Tanabe HC; Sadato N; Watanabe Y
    Neuropsychologia; 2012 Jul; 50(8):1998-2009. PubMed ID: 22571931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Search efficiency is not sufficient: The nature of search modulates stimulus-driven attention.
    Jung K; Han SW; Min Y
    Atten Percept Psychophys; 2019 Jan; 81(1):61-70. PubMed ID: 30276609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rejecting salient distractors: Generalization from experience.
    Vatterott DB; Mozer MC; Vecera SP
    Atten Percept Psychophys; 2018 Feb; 80(2):485-499. PubMed ID: 29230673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating Language and Domain-General Processing in Neurotypicals and Individuals With Aphasia - A Functional Near-Infrared Spectroscopy Pilot Study.
    Gilmore N; Yücel MA; Li X; Boas DA; Kiran S
    Front Hum Neurosci; 2021; 15():728151. PubMed ID: 34602997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged disengagement from distractors near the hands.
    Vatterott DB; Vecera SP
    Front Psychol; 2013; 4():533. PubMed ID: 23966971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attentional capture by salient distractors during visual search is determined by temporal task demands.
    Kiss M; Grubert A; Petersen A; Eimer M
    J Cogn Neurosci; 2012 Mar; 24(3):749-59. PubMed ID: 21861683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural circuits of number and letter copying: an fNIRS study.
    Artemenko C; Coldea A; Soltanlou M; Dresler T; Nuerk HC; Ehlis AC
    Exp Brain Res; 2018 Apr; 236(4):1129-1138. PubMed ID: 29445828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.