These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37567066)

  • 1. A Bayesian method with nonlinear noise model to calibrate constitutive parameters of soft tissue.
    Wang P; Yan Z; Du Z; Fu Y; Liu Z; Qu S; Zhuang Z
    J Mech Behav Biomed Mater; 2023 Oct; 146():106070. PubMed ID: 37567066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty quantification for constitutive model calibration of brain tissue.
    Brewick PT; Teferra K
    J Mech Behav Biomed Mater; 2018 Sep; 85():237-255. PubMed ID: 29935439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian calibration of hyperelastic constitutive models of soft tissue.
    Madireddy S; Sista B; Vemaganti K
    J Mech Behav Biomed Mater; 2016 Jun; 59():108-127. PubMed ID: 26751706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian calibration of process-based forest models: bridging the gap between models and data.
    Van Oijen M; Rougier J; Smith R
    Tree Physiol; 2005 Jul; 25(7):915-27. PubMed ID: 15870058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gradient Markov chain Monte Carlo algorithm for computing multivariate maximum likelihood estimates and posterior distributions: mixture dose-response assessment.
    Li R; Englehardt JD; Li X
    Risk Anal; 2012 Feb; 32(2):345-59. PubMed ID: 21906114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference on a microstructural, hyperelastic model of tendon deformation.
    Haughton J; Cotter SL; Parnell WJ; Shearer T
    J R Soc Interface; 2022 May; 19(190):20220031. PubMed ID: 35582809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
    Hack CE
    Toxicology; 2006 Apr; 221(2-3):241-8. PubMed ID: 16466842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian approach to a general regression model for ROC curves.
    Hellmich M; Abrams KR; Jones DR; Lambert PC
    Med Decis Making; 1998; 18(4):436-43. PubMed ID: 10372587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model.
    Chaudhary A; Hantush MM
    Water Res; 2017 Jan; 108():301-311. PubMed ID: 27836170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surrogate-based Bayesian calibration of biomechanical models with isotropic material behavior.
    Römer U; Liu J; Böl M
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3575. PubMed ID: 35094499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.
    Wilkinson RD
    Stat Appl Genet Mol Biol; 2013 May; 12(2):129-41. PubMed ID: 23652634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of parameters and adsorption isotherm models.
    Pinto FR; Marcellos CFC; Manske C; Gomes Barreto A
    Environ Sci Pollut Res Int; 2024 Sep; 31(41):53729-53742. PubMed ID: 38308775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods.
    Lele SR; Dennis B; Lutscher F
    Ecol Lett; 2007 Jul; 10(7):551-63. PubMed ID: 17542934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of uncertainty-based work injury model using Bayesian structural equation modelling.
    Chatterjee S
    Int J Inj Contr Saf Promot; 2014; 21(4):318-27. PubMed ID: 24111548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian non-linear regression with spatial priors for noise reduction and error estimation in quantitative MRI with an application in T1 estimation.
    Löfstedt T; Hellström M; Bylund M; Garpebring A
    Phys Med Biol; 2020 Nov; 65(22):225036. PubMed ID: 32947277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian-based calibration for water quality model parameters.
    Bai B; Dong F; Peng W; Liu X
    Water Environ Res; 2023 Oct; 95(10):e10936. PubMed ID: 37807852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.
    Korostil IA; Peters GW; Cornebise J; Regan DG
    Stat Med; 2013 May; 32(11):1917-53. PubMed ID: 22961869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian parameter inference by Markov chain Monte Carlo with hybrid fitness measures: theory and test in apoptosis signal transduction network.
    Murakami Y; Takada S
    PLoS One; 2013; 8(9):e74178. PubMed ID: 24086320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.