These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
4. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising. Zhao F; Liu M; Gao Z; Jiang X; Wang R; Zhang L Comput Biol Med; 2023 Jul; 161():107029. PubMed ID: 37230021 [TBL] [Abstract][Full Text] [Related]
5. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
6. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
7. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning. Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732 [TBL] [Abstract][Full Text] [Related]
8. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network. Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402 [TBL] [Abstract][Full Text] [Related]
9. Self-supervised dual-domain balanced dropblock-network for low-dose CT denoising. An R; Chen K; Li H Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38359449 [No Abstract] [Full Text] [Related]
10. An unsupervised two-step training framework for low-dose computed tomography denoising. Kim W; Lee J; Choi JH Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026 [TBL] [Abstract][Full Text] [Related]
11. Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching. Ko Y; Song S; Baek J; Shim H Med Phys; 2024 Jun; 51(6):4181-4200. PubMed ID: 38478305 [TBL] [Abstract][Full Text] [Related]
12. Learning CT projection denoising from adjacent views. Hong Z; Zeng D; Tao X; Ma J Med Phys; 2023 Mar; 50(3):1367-1377. PubMed ID: 36414024 [TBL] [Abstract][Full Text] [Related]
14. Noise2Context: Context-assisted learning 3D thin-layer for low-dose CT. Zhang Z; Liang X; Zhao W; Xing L Med Phys; 2021 Oct; 48(10):5794-5803. PubMed ID: 34287948 [TBL] [Abstract][Full Text] [Related]
15. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
16. Training low dose CT denoising network without high quality reference data. Jing J; Xia W; Hou M; Chen H; Liu Y; Zhou J; Zhang Y Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35313298 [No Abstract] [Full Text] [Related]
17. Transfer learning framework for low-dose CT reconstruction based on marginal distribution adaptation in multiscale. Yang M; Wang J; Zhang Z; Li J; Liu L Med Phys; 2023 Mar; 50(3):1450-1465. PubMed ID: 36321246 [TBL] [Abstract][Full Text] [Related]
18. Semi-supervised iterative adaptive network for low-dose CT sinogram recovery. Wang L; Meng M; Chen S; Bian Z; Zeng D; Meng D; Ma J Phys Med Biol; 2024 Apr; 69(8):. PubMed ID: 38422540 [No Abstract] [Full Text] [Related]
19. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising. Wang J; Tang Y; Wu Z; Du Q; Yao L; Yang X; Li M; Zheng J Comput Med Imaging Graph; 2023 Jul; 107():102237. PubMed ID: 37116340 [TBL] [Abstract][Full Text] [Related]
20. A Review of deep learning methods for denoising of medical low-dose CT images. Zhang J; Gong W; Ye L; Wang F; Shangguan Z; Cheng Y Comput Biol Med; 2024 Mar; 171():108112. PubMed ID: 38387380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]