BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37567688)

  • 1. Modulation of surface properties of cellulose nanocrystals through adsorption of tannic acid and alkyl cellulose derivatives.
    D'Acierno F; Capron I
    Carbohydr Polym; 2023 Nov; 319():121159. PubMed ID: 37567688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions.
    Hu Z; Marway HS; Kasem H; Pelton R; Cranston ED
    ACS Macro Lett; 2016 Feb; 5(2):185-189. PubMed ID: 35614697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Tannic Acid on the Cholesteric Structure of Cellulose Nanocrystals.
    Jie H; Feng K; Lu M; Jin Z
    Langmuir; 2024 Jun; ():. PubMed ID: 38920318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tannic acid-coated cellulose nanocrystals with enhanced mucoadhesive properties for aquaculture.
    Haji F; Kim DS; Tam KC
    Carbohydr Polym; 2023 Jul; 312():120835. PubMed ID: 37059561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
    Lin F; Lin W; Chen J; Sun C; Zheng X; Xu Y; Lu B; Chen J; Huang B
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Cellulose Nanocrystals-Based Polyurethane: Synthesis, Characterization and Antibacterial Activity.
    Zhang M; Lu X; Zhang G; Liao X; Wang J; Zhang N; Yu C; Zeng G
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polylactic Acid Cellulose Nanocomposite Films Comprised of Wood and Tunicate CNCs Modified with Tannic Acid and Octadecylamine.
    Dunlop MJ; Sabo R; Bissessur R; Acharya B
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.
    Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tannic acid adsorption properties of cellulose nanocrystalline/fish swim bladder gelatin composite sponge.
    Pan L; Du J; Yin Q; Tao Y; Li P
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128552. PubMed ID: 38061524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tannic acid-enriched nanocellulose hydrogels improve physical and oxidative stability of high-internal-phase Pickering emulsions.
    Ni Y; Li J; Fan L
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):128796. PubMed ID: 38104679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties.
    Batta-Mpouma J; Kandhola G; Sakon J; Kim JW
    Biomacromolecules; 2022 Oct; 23(10):4085-4096. PubMed ID: 36166819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films.
    Natarajan B; Emiroglu C; Obrzut J; Fox DM; Pazmino B; Douglas JF; Gilman JW
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14222-14231. PubMed ID: 28394559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Physicochemical Properties of Cellulose Nanocrystals through an In Situ Oligosaccharide Surface Modification Method.
    Niinivaara E; Vanderfleet OM; Kontturi E; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3284-3296. PubMed ID: 34260208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation.
    Ma T; Hu X; Lu S; Cui R; Zhao J; Hu X; Song Y
    Int J Biol Macromol; 2021 Aug; 184():405-414. PubMed ID: 34146558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals
    Kiriakou MV; Berry RM; Hoare T; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites.
    Voronova M; Rubleva N; Kochkina N; Afineevskii A; Zakharov A; Surov O
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30563129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.