BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37567710)

  • 1. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties.
    Xu H; Sanchez-Salvador JL; Blanco A; Balea A; Negro C
    Carbohydr Polym; 2023 Nov; 319():121168. PubMed ID: 37567710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading.
    Sanchez-Salvador JL; Xu H; Balea A; Blanco A; Negro C
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129612. PubMed ID: 38272426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost.
    Serra A; González I; Oliver-Ortega H; Tarrès Q; Delgado-Aguilar M; Mutjé P
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods.
    Van Hai L; Zhai L; Kim HC; Kim JW; Choi ES; Kim J
    Carbohydr Polym; 2018 Jul; 191():65-70. PubMed ID: 29661322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate-Chlorite Oxidation.
    Guo M; Ede JD; Sayes CM; Shatkin JA; Stark N; Hsieh YL
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp.
    Loranger E; Piché AO; Daneault C
    Nanomaterials (Basel); 2012 Sep; 2(3):286-297. PubMed ID: 28348309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of Rat Mesenchymal Stromal Cells to Nanocellulose with Different Functional Groups.
    Rashad A; Grøndahl M; Heggset EB; Mustafa K; Syverud K
    ACS Appl Bio Mater; 2023 Mar; 6(3):987-998. PubMed ID: 36763504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils.
    de Amorim Dos Santos A; Silva MJFE; Scatolino MV; Durães AFS; Dias MC; Damásio RAP; Tonoli GHD
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4934-4948. PubMed ID: 35978240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainability of cellulose micro-/nanofibers: A comparative life cycle assessment of pathway technologies.
    Arfelis S; Aguado RJ; Civancik D; Fullana-I-Palmer P; Pèlach MÀ; Tarrés Q; Delgado-Aguilar M
    Sci Total Environ; 2023 May; 874():162482. PubMed ID: 36858230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils.
    Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J
    Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard.
    Sanchez-Salvador JL; Balea A; Monte MC; Negro C; Miller M; Olson J; Blanco A
    Sci Rep; 2020 Mar; 10(1):3778. PubMed ID: 32123213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of The Reaction Mechanism to Produce Nanocellulose-Graft-Chitosan Polymer.
    Sanchez-Salvador JL; Balea A; Monte MC; Blanco A; Negro C
    Nanomaterials (Basel); 2018 Oct; 8(11):. PubMed ID: 30380728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.
    Carlsson DO; Hua K; Forsgren J; Mihranyan A
    Int J Pharm; 2014 Jan; 461(1-2):74-81. PubMed ID: 24291076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recoverable dendritic polyamidoamine immobilized TEMPO for efficient catalytic oxidation of cellulose.
    Liu S; Liang H; Sun T; Yang D; Cao M
    Carbohydr Polym; 2018 Dec; 202():563-570. PubMed ID: 30287037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of TEMPO by ClO
    Pääkkönen T; Pönni R; Dou J; Nuopponen M; Vuorinen T
    Carbohydr Polym; 2017 Oct; 174():524-530. PubMed ID: 28821100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility.
    Luo J; Semenikhin N; Chang H; Moon RJ; Kumar S
    Carbohydr Polym; 2018 Feb; 181():247-255. PubMed ID: 29253969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.