BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37567720)

  • 1. Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum.
    Klostermann CE; Endika MF; Ten Cate E; Buwalda PL; de Vos P; Bitter JH; Zoetendal EG; Schols HA
    Carbohydr Polym; 2023 Nov; 319():121187. PubMed ID: 37567720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of digestible starch impacts
    Klostermann CE; Endika MF; Kouzounis D; Buwalda PL; de Vos P; Zoetendal EG; Bitter JH; Schols HA
    Food Funct; 2024 Jan; 15(1):223-235. PubMed ID: 38054370
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Teichmann J; Cockburn DW
    Front Microbiol; 2021; 12():640253. PubMed ID: 33995299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable responses of human microbiomes to dietary supplementation with resistant starch.
    Venkataraman A; Sieber JR; Schmidt AW; Waldron C; Theis KR; Schmidt TM
    Microbiome; 2016 Jun; 4(1):33. PubMed ID: 27357127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestibility of resistant starch type 3 is affected by crystal type, molecular weight and molecular weight distribution.
    Klostermann CE; Buwalda PL; Leemhuis H; de Vos P; Schols HA; Bitter JH
    Carbohydr Polym; 2021 Aug; 265():118069. PubMed ID: 33966833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review.
    Tiwari UP; Singh AK; Jha R
    Anim Nutr; 2019 Sep; 5(3):217-226. PubMed ID: 31528722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics.
    Bird AR; Conlon MA; Christophersen CT; Topping DL
    Benef Microbes; 2010 Nov; 1(4):423-31. PubMed ID: 21831780
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Giuberti G; Gallo A
    Heliyon; 2020 Jan; 6(1):e03145. PubMed ID: 32042944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum.
    Giuberti G; Gallo A; Moschini M; Masoero F
    Animal; 2013 Sep; 7(9):1446-53. PubMed ID: 23782951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles.
    Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ
    Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism.
    Vidrine K; Ye J; Martin RJ; McCutcheon KL; Raggio AM; Pelkman C; Durham HA; Zhou J; Senevirathne RN; Williams C; Greenway F; Finley J; Gao Z; Goldsmith F; Keenan MJ
    Obesity (Silver Spring); 2014 Feb; 22(2):344-8. PubMed ID: 23630079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of age and dietary resistant starch on digestibility, fermentation end products in faeces and postprandial glucose and insulin responses of dogs.
    Ribeiro ÉM; Peixoto MC; Putarov TC; Monti M; Pacheco PDG; Loureiro BA; Pereira GT; Carciofi AC
    Arch Anim Nutr; 2019 Dec; 73(6):485-504. PubMed ID: 31544530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate degradation and postbiotic analysis of alternative fiber ingredients fermented using an in vitro canine fecal inoculum model.
    Holt DA; Corsato Alvarenga I; Donadelli RA; Aldrich CG
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36943140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro.
    Shen Q; Zhao L; Tuohy KM
    Eur J Nutr; 2012 Sep; 51(6):693-705. PubMed ID: 21952691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of structural characteristics of resistant starch prepared by various methods on microbial community and fermentative products.
    Li S; Meng Y; Wang C; Suonan Z; Zhang X; Wu T; Dai Z; Zhang Y; Sharafeldin S; Zhang Y; Shen Q; Xue Y
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127725. PubMed ID: 38287585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistant Starch is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity.
    Gopalsamy G; Mortimer E; Greenfield P; Bird AR; Young GP; Christophersen CT
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31208010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats.
    J Abell GC; Christophersen CT; McOrist AL; Clarke JM
    Br J Nutr; 2011 May; 105(10):1480-5. PubMed ID: 21255474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The branching ratio of enzymatically synthesized α-glucans impacts microbiome and metabolic outcomes of in vitro fecal fermentation.
    Yaşar A; Ryu HJ; Esen E; Sarıoğlan İ; Deemer D; Çetin B; Yoo SH; Lindemann SR; Lee BH; Tunçil YE
    Carbohydr Polym; 2024 Jul; 335():122087. PubMed ID: 38616077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human faecal microbiota develops the ability to degrade type 3 resistant starch during weaning.
    Scheiwiller J; Arrigoni E; Brouns F; Amadò R
    J Pediatr Gastroenterol Nutr; 2006 Nov; 43(5):584-91. PubMed ID: 17130732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease.
    Rose DJ; Venema K; Keshavarzian A; Hamaker BR
    Br J Nutr; 2010 May; 103(10):1514-24. PubMed ID: 20021704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.