BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37567994)

  • 21. Food availability is crucial for effects of 1-μm polystyrene beads on the nematode Caenorhabditis elegans in freshwater sediments.
    Höss S; Rauchschwalbe MT; Fueser H; Traunspurger W
    Chemosphere; 2022 Jul; 298():134101. PubMed ID: 35292277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The toxicity of a mixture of two antiseptics, triclosan and triclocarban, on reproduction and growth of the nematode Caenorhabditis elegans.
    Vingskes AK; Spann N
    Ecotoxicology; 2018 May; 27(4):420-429. PubMed ID: 29411206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity.
    Cole RD; Anderson GL; Williams PL
    Toxicol Appl Pharmacol; 2004 Feb; 194(3):248-56. PubMed ID: 14761681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds.
    Dengg M; van Meel JC
    J Pharmacol Toxicol Methods; 2004; 50(3):209-14. PubMed ID: 15519907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Baseline Narcosis for the Glass-Vial 96-h Growth Inhibition of the Nematode
    Saleem S; Böhme A; Schüürmann G
    Environ Sci Technol; 2023 Jan; 57(4):1692-1700. PubMed ID: 36656685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freely dissolved concentration profile and Hyalella azteca toxicity of cationic surfactant C
    Yoshii S; Hiki K; Watanabe H; Yamamoto H; Endo S
    Sci Total Environ; 2023 Mar; 866():161226. PubMed ID: 36586690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discrimination of excess toxicity from narcotic effect: comparison of toxicity of class-based organic chemicals to Daphnia magna and Tetrahymena pyriformis.
    Zhang X; Qin W; He J; Wen Y; Su L; Sheng L; Zhao Y
    Chemosphere; 2013 Sep; 93(2):397-407. PubMed ID: 23786811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic responses in Caenorhabditis elegans following chronic low-level exposures to inorganic and organic compounds.
    Mugova F; Read DS; Riding MJ; Martin FL; Tyne W; Svendsen C; Spurgeon D
    Environ Toxicol Chem; 2018 Mar; 37(3):920-930. PubMed ID: 29095522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons.
    Haftka JJ; Govers HA; Parsons JR
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1070-9. PubMed ID: 19953335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM).
    Delgado-Moreno L; Wu L; Gan J
    Aquat Toxicol; 2015 Aug; 165():129-35. PubMed ID: 26037097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing 10- and 28-Day Sediment Toxicity and Bioaccumulation of Fluoranthene in Hyalella azteca Using Passive Sampling Techniques.
    Nishimori T; Hiki K; Fischer FC; Endo S; Yamamoto H; Watanabe H
    Environ Toxicol Chem; 2022 Nov; 41(11):2679-2687. PubMed ID: 35959891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of seven organic pollutants on soil nematode Caenorhabditis elegans.
    Sochová I; Hofman J; Holoubek I
    Environ Int; 2007 Aug; 33(6):798-804. PubMed ID: 17449100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.
    Stadnicka-Michalak J; Tanneberger K; Schirmer K; Ashauer R
    PLoS One; 2014; 9(3):e92303. PubMed ID: 24647349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing behavioral toxicity with Caenorhabditis elegans.
    Anderson GL; Cole RD; Williams PL
    Environ Toxicol Chem; 2004 May; 23(5):1235-40. PubMed ID: 15180374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring binding and speciation of hydrophobic organic chemicals at controlled freely dissolved concentrations and without phase separation.
    Gouliarmou V; Smith KE; de Jonge LW; Mayer P
    Anal Chem; 2012 Feb; 84(3):1601-8. PubMed ID: 22148547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between acute and chronic toxicity for prevalent organic pollutants in Vibrio fischeri based upon chemical mode of action.
    Wang XH; Fan LY; Wang S; Wang Y; Yan LC; Zheng SS; Martyniuk CJ; Zhao YH
    J Hazard Mater; 2017 Sep; 338():458-465. PubMed ID: 28599262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caenorhabditis elegans, a Biological Model for Research in Toxicology.
    Tejeda-Benitez L; Olivero-Verbel J
    Rev Environ Contam Toxicol; 2016; 237():1-35. PubMed ID: 26613986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A High-throughput Assay for the Prediction of Chemical Toxicity by Automated Phenotypic Profiling of Caenorhabditis elegans.
    Gao S; Chen W; Zhang N; Xu C; Jing H; Zhang W; Han G; Flavel M; Jois M; Zeng Y; Han JJ; Xian B; Li G
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30933063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic carbon source in formulated sediments influences life traits and gene expression of Caenorhabditis elegans.
    Franzen J; Menzel R; Höss S; Claus E; Steinberg CE
    Ecotoxicology; 2012 Mar; 21(2):557-68. PubMed ID: 22080434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.