BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 3756905)

  • 1. Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the K-562 human leukemia cell line.
    López-Alarcón L; Eboli ML
    Cancer Res; 1986 Nov; 46(11):5589-91. PubMed ID: 3756905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of the malate-aspartate shuttle in various tumor types.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1976 Apr; 36(4):1392-6. PubMed ID: 177206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of cytosolic NADH by the malate-aspartate shuttle in MC29 hepatoma cells.
    Matsuno T
    Cell Biol Int Rep; 1989 Sep; 13(9):739-45. PubMed ID: 2805084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methotrexate: studies on cellular metabolism. IV. Effect on the mitochondrial oxidation of cytosolic-reducing equivalents in HeLa cells.
    Bastos MT; Oliveria MB; Campello AP; Klüppel ML
    Cell Biochem Funct; 1990 Oct; 8(4):199-203. PubMed ID: 2272117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of cytosolic NADH by the malate-aspartate shuttle in HuH13 human hepatoma cells.
    Matsuno T
    Int J Biochem; 1992 Feb; 24(2):313-5. PubMed ID: 1310290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes.
    Sibille B; Keriel C; Fontaine E; Catelloni F; Rigoulet M; Leverve XM
    Eur J Biochem; 1995 Jul; 231(2):498-502. PubMed ID: 7635161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The operation of the malate-aspartate shuttle in the reoxidation of glycolytic NADH in slices of fetal rat liver.
    Dani A; Bartoli GM; Galeotti T
    Biochim Biophys Acta; 1977 Dec; 462(3):781-4. PubMed ID: 202312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates.
    Kauppinen RA; Sihra TS; Nicholls DG
    Biochim Biophys Acta; 1987 Sep; 930(2):173-8. PubMed ID: 3620514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of reduced nicotinamide-adenine dinucleotide by the malate-aspartate shuttle in Ehrlich ascites tumour cells.
    Dionisi O; Longhi G; Eboli ML; Galeotti T; Terranova T
    Biochim Biophys Acta; 1974 Mar; 333(3):577-80. PubMed ID: 4367964
    [No Abstract]   [Full Text] [Related]  

  • 11. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of the activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells.
    Chiaretti B; Casciaro A; Minotti G; Eboli ML; Galeotti T
    Cancer Res; 1979 Jun; 39(6 Pt 1):2195-9. PubMed ID: 221103
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional significance of the malate-aspartate shuttle for the oxidation of cytoplasmic reducing equivalents in rat heart.
    Safer H; Williamson JR
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():34-43. PubMed ID: 4377825
    [No Abstract]   [Full Text] [Related]  

  • 14. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The function of redox shuttles during aerobic glycolysis in two strains of Ehrlich ascites tumor cells.
    Sánchez-Jiménez F; Martínez P; Núñez de Castro I; Olavarría JS
    Biochimie; 1985 Feb; 67(2):259-64. PubMed ID: 4005310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes.
    Cheeseman AJ; Clark JB
    J Neurochem; 1988 May; 50(5):1559-65. PubMed ID: 3361310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.
    Abbrescia DI; La Piana G; Lofrumento NE
    Arch Biochem Biophys; 2012 Feb; 518(2):157-63. PubMed ID: 22239987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.