These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 37569186)
21. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk. Kasemsumran S; Thanapase W; Kiatsoonthon A Anal Sci; 2007 Jul; 23(7):907-10. PubMed ID: 17625339 [TBL] [Abstract][Full Text] [Related]
22. On the utilization of deep and ensemble learning to detect milk adulteration. Neto HA; Tavares WLF; Ribeiro DCSZ; Alves RCO; Fonseca LM; Campos SVA BioData Min; 2019; 12():13. PubMed ID: 31320927 [TBL] [Abstract][Full Text] [Related]
23. A new comprehensive index for discriminating adulteration in bovine raw milk. Liu J; Ren J; Liu ZM; Guo BH Food Chem; 2015 Apr; 172():251-6. PubMed ID: 25442551 [TBL] [Abstract][Full Text] [Related]
24. Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk. Spina AA; Ceniti C; Piras C; Tilocca B; Britti D; Morittu VM J Anim Sci Technol; 2022 May; 64(3):531-538. PubMed ID: 35709130 [TBL] [Abstract][Full Text] [Related]
25. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Jawaid S; Talpur FN; Sherazi ST; Nizamani SM; Khaskheli AA Food Chem; 2013 Dec; 141(3):3066-71. PubMed ID: 23871060 [TBL] [Abstract][Full Text] [Related]
26. Destructive and rapid non-invasive methods used to detect adulteration of dried powdered horticultural products: A review. Faith Ndlovu P; Samukelo Magwaza L; Zeray Tesfay S; Ramaesele Mphahlele R Food Res Int; 2022 Jul; 157():111198. PubMed ID: 35761522 [TBL] [Abstract][Full Text] [Related]
27. Use of FTIR for rapid authentication and detection of adulteration of food. Rodriguez-Saona LE; Allendorf ME Annu Rev Food Sci Technol; 2011; 2():467-83. PubMed ID: 22129392 [TBL] [Abstract][Full Text] [Related]
28. Short communication: Fourier-transform mid-infrared spectroscopy to predict coagulation and acidity traits of sheep bulk milk. Manuelian CL; Penasa M; Giangolini G; Boselli C; Currò S; De Marchi M J Dairy Sci; 2019 Mar; 102(3):1927-1932. PubMed ID: 30612792 [TBL] [Abstract][Full Text] [Related]
29. Advances in Atypical FT-IR Milk Screening: Combining Untargeted Spectra Screening and Cluster Algorithms. Spieß L; de Peinder P; van den Bijgaart H Foods; 2021 May; 10(5):. PubMed ID: 34069770 [TBL] [Abstract][Full Text] [Related]
30. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Reis N; Franca AS; Oliveira LS Talanta; 2013 Oct; 115():563-8. PubMed ID: 24054633 [TBL] [Abstract][Full Text] [Related]
31. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR). Cirak O; Icyer NC; Durak MZ J Dairy Res; 2018 May; 85(2):222-225. PubMed ID: 29785908 [TBL] [Abstract][Full Text] [Related]
32. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut ( Pandiselvam R; Kaavya R; Martinez Monteagudo SI; Divya V; Jain S; Khanashyam AC; Kothakota A; Prasath VA; Ramesh SV; Sruthi NU; Kumar M; Manikantan MR; Kumar CA; Khaneghah AM; Cozzolino D Molecules; 2022 May; 27(10):. PubMed ID: 35630725 [TBL] [Abstract][Full Text] [Related]
33. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. Grelet C; Bastin C; Gelé M; Davière JB; Johan M; Werner A; Reding R; Fernandez Pierna JA; Colinet FG; Dardenne P; Gengler N; Soyeurt H; Dehareng F J Dairy Sci; 2016 Jun; 99(6):4816-4825. PubMed ID: 27016835 [TBL] [Abstract][Full Text] [Related]
34. Standardization of milk mid-infrared spectra from a European dairy network. Grelet C; Fernández Pierna JA; Dardenne P; Baeten V; Dehareng F J Dairy Sci; 2015 Apr; 98(4):2150-60. PubMed ID: 25682131 [TBL] [Abstract][Full Text] [Related]
35. Determination of protein concentration in raw milk by mid-infrared fourier transform infrared/attenuated total reflectance spectroscopy. Etzion Y; Linker R; Cogan U; Shmulevich I J Dairy Sci; 2004 Sep; 87(9):2779-88. PubMed ID: 15375035 [TBL] [Abstract][Full Text] [Related]
36. Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification - Is it data preprocessing that makes the performance? Horn B; Esslinger S; Pfister M; Fauhl-Hassek C; Riedl J Food Chem; 2018 Aug; 257():112-119. PubMed ID: 29622186 [TBL] [Abstract][Full Text] [Related]
37. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants. Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802 [TBL] [Abstract][Full Text] [Related]
38. Rapid detection of neutralising acid adulterants in raw milk using a milk component analyser and chemometrics. Tian H; Chen B; Yu H; Lou X; Li Y; Yu H; Chen L; Chen C Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Sep; 39(9):1501-1511. PubMed ID: 35767628 [TBL] [Abstract][Full Text] [Related]
39. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Balabin RM; Smirnov SV Talanta; 2011 Jul; 85(1):562-8. PubMed ID: 21645742 [TBL] [Abstract][Full Text] [Related]
40. Detection and quantification of anionic detergent (lissapol) in milk using attenuated total reflectance-Fourier Transform Infrared spectroscopy. Jaiswal P; Jha SN; Kaur J; Borah A Food Chem; 2017 Apr; 221():815-821. PubMed ID: 27979278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]