BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 37569333)

  • 1. Practical Approaches for the Yeast
    Stepchenkova EI; Zadorsky SP; Shumega AR; Aksenova AY
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easy efficient HDR-based targeted knock-in in
    Singh R; Chandel S; Ghosh A; Gautam A; Huson DH; Ravichandiran V; Ghosh D
    Bioengineered; 2022 Jun; 13(6):14857-14871. PubMed ID: 36602175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of
    Xie ZX; Mitchell LA; Liu HM; Li BZ; Liu D; Agmon N; Wu Y; Li X; Zhou X; Li B; Xiao WH; Ding MZ; Wang Y; Yuan YJ; Boeke JD
    G3 (Bethesda); 2018 Jan; 8(1):173-183. PubMed ID: 29150593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
    Nishimura A; Tanahashi R; Oi T; Kan K; Takagi H
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):458-462. PubMed ID: 36694939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in Gene Editing and Metabolic Regulation of
    Liang Y; Gao S; Qi X; Valentovich LN; An Y
    ACS Synth Biol; 2024 Feb; 13(2):428-448. PubMed ID: 38326929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing CRISPR-Cas9 Yeast Practicals into Biology Curricula.
    Juríková K; Sepšiová R; Ševčovičová A; Tomáška Ľ; Džugasová V
    CRISPR J; 2022 Apr; 5(2):181-186. PubMed ID: 35333620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae.
    Easmin F; Sasano Y; Kimura S; Hassan N; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2020 Feb; 129(2):129-139. PubMed ID: 31585858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast.
    Novarina D; Koutsoumpa A; Milias-Argeitis A
    STAR Protoc; 2022 Jun; 3(2):101358. PubMed ID: 35712010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of Cas9 expression on cell growth and production of natural products in Saccharomyces cerevisiae and optimization of CRISPR-Cas9 editing system].
    Tang H; Cheng YT; Guo J; Bao JC; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2022 Aug; 47(15):4066-4073. PubMed ID: 36046896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marker-free genetic manipulations in yeast using CRISPR/CAS9 system.
    Soreanu I; Hendler A; Dahan D; Dovrat D; Aharoni A
    Curr Genet; 2018 Oct; 64(5):1129-1139. PubMed ID: 29626221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
    Liao B; Chen X; Zhou X; Zhou Y; Shi Y; Ye X; Liao M; Zhou Z; Cheng L; Ren B
    Arch Microbiol; 2021 Dec; 204(1):79. PubMed ID: 34954815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast
    Hong J; Meng Z; Zhang Z; Su H; Fan Y; Huang R; Ding R; Zhang N; Li F; Wang S
    CRISPR J; 2022 Aug; 5(4):558-570. PubMed ID: 35506993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.