BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37569585)

  • 1. Characterization of Breast Cancer Aggressiveness by Cell Mechanics.
    Zbiral B; Weber A; Vivanco MD; Toca-Herrera JL
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell mechanical properties of human breast carcinoma cells depend on temperature.
    Aermes C; Hayn A; Fischer T; Mierke CT
    Sci Rep; 2021 May; 11(1):10771. PubMed ID: 34031462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements.
    Schwickert A; Weghake E; Brüggemann K; Engbers A; Brinkmann BF; Kemper B; Seggewiß J; Stock C; Ebnet K; Kiesel L; Riethmüller C; Götte M
    PLoS One; 2015; 10(12):e0143993. PubMed ID: 26657485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β induces changes in breast cancer cell deformability.
    Kulkarni AH; Chatterjee A; Kondaiah P; Gundiah N
    Phys Biol; 2018 Aug; 15(6):065005. PubMed ID: 29745937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells.
    Nassef MZ; Kopp S; Wehland M; Melnik D; Sahana J; Krüger M; Corydon TJ; Oltmann H; Schmitz B; Schütte A; Bauer TJ; Infanger M; Grimm D
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Anti-tumor Agents on ER-Positive MCF-7 and HER2-Positive SKBR-3 Breast Cancer Cells Biomechanics.
    Metsiou DN; Siatis KE; Giannopoulou E; Papachristou DJ; Kalofonos HP; Koutras A; Athanassiou G
    Ann Biomed Eng; 2019 Aug; 47(8):1711-1724. PubMed ID: 31098800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion.
    Omidvar R; Tafazzoli-Shadpour M; Shokrgozar MA; Rostami M
    J Biomech; 2014 Oct; 47(13):3373-9. PubMed ID: 25169659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.
    Nikkhah M; Strobl JS; De Vita R; Agah M
    Biomaterials; 2010 Jun; 31(16):4552-61. PubMed ID: 20207413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines.
    Rother J; Nöding H; Mey I; Janshoff A
    Open Biol; 2014 May; 4(5):140046. PubMed ID: 24850913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation.
    Liu CY; Lin HH; Tang MJ; Wang YK
    Oncotarget; 2015 Jun; 6(18):15966-83. PubMed ID: 25965826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy.
    Iturri J; Weber A; Moreno-Cencerrado A; Vivanco MD; Benítez R; Leporatti S; Toca-Herrera JL
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the degree of chromosomal instability in breast cancer cells by atomic force microscopy.
    Wang B; Dong J; Yang F; Ju T; Wang J; Qu K; Wang Y; Tian Y; Wang Z
    Analyst; 2024 Mar; 149(7):1988-1997. PubMed ID: 38420857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231.
    Aguilar-Rojas A; Huerta-Reyes M; Maya-Núñez G; Arechavaleta-Velásco F; Conn PM; Ulloa-Aguirre A; Valdés J
    BMC Cancer; 2012 Nov; 12():550. PubMed ID: 23176180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Mechanical Properties of Breast Cancer Cells with Atomic Force Microscopy.
    Zbiral B; Weber A; Toca-Herrera JL
    Methods Mol Biol; 2022; 2471():323-343. PubMed ID: 35175607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells.
    Hu J; Zhou Y; Obayemi JD; Du J; Soboyejo WO
    J Mech Behav Biomed Mater; 2018 Oct; 86():1-13. PubMed ID: 29913305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.