These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 37569585)
1. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Zbiral B; Weber A; Vivanco MD; Toca-Herrera JL Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569585 [TBL] [Abstract][Full Text] [Related]
2. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells. Schierbaum N; Rheinlaender J; Schäffer TE Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292 [TBL] [Abstract][Full Text] [Related]
3. Cell mechanical properties of human breast carcinoma cells depend on temperature. Aermes C; Hayn A; Fischer T; Mierke CT Sci Rep; 2021 May; 11(1):10771. PubMed ID: 34031462 [TBL] [Abstract][Full Text] [Related]
4. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy. Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115 [TBL] [Abstract][Full Text] [Related]
5. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells. Nguyen N; Shao Y; Wineman A; Fu J; Waas A Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978 [TBL] [Abstract][Full Text] [Related]
6. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements. Schwickert A; Weghake E; Brüggemann K; Engbers A; Brinkmann BF; Kemper B; Seggewiß J; Stock C; Ebnet K; Kiesel L; Riethmüller C; Götte M PLoS One; 2015; 10(12):e0143993. PubMed ID: 26657485 [TBL] [Abstract][Full Text] [Related]
7. TGF-β induces changes in breast cancer cell deformability. Kulkarni AH; Chatterjee A; Kondaiah P; Gundiah N Phys Biol; 2018 Aug; 15(6):065005. PubMed ID: 29745937 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy. Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438 [TBL] [Abstract][Full Text] [Related]
9. Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Nassef MZ; Kopp S; Wehland M; Melnik D; Sahana J; Krüger M; Corydon TJ; Oltmann H; Schmitz B; Schütte A; Bauer TJ; Infanger M; Grimm D Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261642 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Anti-tumor Agents on ER-Positive MCF-7 and HER2-Positive SKBR-3 Breast Cancer Cells Biomechanics. Metsiou DN; Siatis KE; Giannopoulou E; Papachristou DJ; Kalofonos HP; Koutras A; Athanassiou G Ann Biomed Eng; 2019 Aug; 47(8):1711-1724. PubMed ID: 31098800 [TBL] [Abstract][Full Text] [Related]
11. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion. Omidvar R; Tafazzoli-Shadpour M; Shokrgozar MA; Rostami M J Biomech; 2014 Oct; 47(13):3373-9. PubMed ID: 25169659 [TBL] [Abstract][Full Text] [Related]
12. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Nikkhah M; Strobl JS; De Vita R; Agah M Biomaterials; 2010 Jun; 31(16):4552-61. PubMed ID: 20207413 [TBL] [Abstract][Full Text] [Related]
13. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Rother J; Nöding H; Mey I; Janshoff A Open Biol; 2014 May; 4(5):140046. PubMed ID: 24850913 [TBL] [Abstract][Full Text] [Related]
14. AFM indentation study of breast cancer cells. Li QS; Lee GY; Ong CN; Lim CT Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442 [TBL] [Abstract][Full Text] [Related]
15. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Liu CY; Lin HH; Tang MJ; Wang YK Oncotarget; 2015 Jun; 6(18):15966-83. PubMed ID: 25965826 [TBL] [Abstract][Full Text] [Related]
16. Determining the degree of chromosomal instability in breast cancer cells by atomic force microscopy. Wang B; Dong J; Yang F; Ju T; Wang J; Qu K; Wang Y; Tian Y; Wang Z Analyst; 2024 Mar; 149(7):1988-1997. PubMed ID: 38420857 [TBL] [Abstract][Full Text] [Related]
17. Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy. Iturri J; Weber A; Moreno-Cencerrado A; Vivanco MD; Benítez R; Leporatti S; Toca-Herrera JL Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277289 [TBL] [Abstract][Full Text] [Related]
18. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231. Aguilar-Rojas A; Huerta-Reyes M; Maya-Núñez G; Arechavaleta-Velásco F; Conn PM; Ulloa-Aguirre A; Valdés J BMC Cancer; 2012 Nov; 12():550. PubMed ID: 23176180 [TBL] [Abstract][Full Text] [Related]
19. Effects of energy metabolism on the mechanical properties of breast cancer cells. Yubero ML; Kosaka PM; San Paulo Á; Malumbres M; Calleja M; Tamayo J Commun Biol; 2020 Oct; 3(1):590. PubMed ID: 33082491 [TBL] [Abstract][Full Text] [Related]
20. Measuring Mechanical Properties of Breast Cancer Cells with Atomic Force Microscopy. Zbiral B; Weber A; Toca-Herrera JL Methods Mol Biol; 2022; 2471():323-343. PubMed ID: 35175607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]