BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37569599)

  • 1. Sir2 and Glycerol Underlie the Pro-Longevity Effect of Quercetin during Yeast Chronological Aging.
    Abbiati F; Garagnani SA; Orlandi I; Vai M
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent.
    Orlandi I; Stamerra G; Strippoli M; Vai M
    Redox Biol; 2017 Aug; 12():745-754. PubMed ID: 28412652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors.
    Casatta N; Porro A; Orlandi I; Brambilla L; Vai M
    Biochim Biophys Acta; 2013 Mar; 1833(3):593-601. PubMed ID: 23159490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide supplementation phenocopies SIR2 inactivation by modulating carbon metabolism and respiration during yeast chronological aging.
    Orlandi I; Pellegrino Coppola D; Strippoli M; Ronzulli R; Vai M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):277-287. PubMed ID: 27320176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered Expression of Mitochondrial NAD
    Orlandi I; Stamerra G; Vai M
    Front Genet; 2018; 9():676. PubMed ID: 30619489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.
    Orozco H; Matallana E; Aranda A
    Microb Cell Fact; 2013 Jan; 12():1. PubMed ID: 23282100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.
    Vall-Llaura N; Mir N; Garrido L; Vived C; Cabiscol E
    Redox Biol; 2019 Jun; 24():101229. PubMed ID: 31153040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene-nutrient interaction markedly influences yeast chronological lifespan.
    Smith DL; Maharrey CH; Carey CR; White RA; Hartman JL
    Exp Gerontol; 2016 Dec; 86():113-123. PubMed ID: 27125759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions.
    Orozco H; Matallana E; Aranda A
    Microb Cell Fact; 2012 Aug; 11():104. PubMed ID: 22873488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast Chronological Lifespan: Longevity Regulatory Genes and Mechanisms.
    Mirisola MG; Longo VD
    Cells; 2022 May; 11(10):. PubMed ID: 35626750
    [No Abstract]   [Full Text] [Related]  

  • 11. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.
    Santos J; Leitão-Correia F; Sousa MJ; Leão C
    Oncotarget; 2016 Apr; 7(17):23033-42. PubMed ID: 27072582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some Metabolites Act as Second Messengers in Yeast Chronological Aging.
    Mohammad K; Dakik P; Medkour Y; McAuley M; Mitrofanova D; Titorenko VI
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29543708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.
    Cao L; Tang Y; Quan Z; Zhang Z; Oliver SG; Zhang N
    PLoS Genet; 2016 Dec; 12(12):e1006458. PubMed ID: 27923067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of quercetin in combination with caloric restriction against oxidative stress-induced cell death of Saccharomyces cerevisiae cells.
    Alugoju P; Periyasamy L; Dyavaiah M
    Lett Appl Microbiol; 2020 Sep; 71(3):272-279. PubMed ID: 32394448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation.
    Xie D; Sun Y; Lei Y
    J Sci Food Agric; 2022 Sep; 102(12):5333-5347. PubMed ID: 35318660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genomic analysis of chronological longevity factors in budding yeast.
    Burtner CR; Murakami CJ; Olsen B; Kennedy BK; Kaeberlein M
    Cell Cycle; 2011 May; 10(9):1385-96. PubMed ID: 21447998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in the RAD27 and SGS1 genes differentially affect the chronological and replicative lifespan of yeast cells growing on glucose and glycerol.
    Ringvoll J; Uldal L; Roed MA; Reite K; Baynton K; Klungland A; Eide L
    FEMS Yeast Res; 2007 Sep; 7(6):848-59. PubMed ID: 17506834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol and acetate acting as carbon/energy sources negatively affect yeast chronological aging.
    Orlandi I; Ronzulli R; Casatta N; Vai M
    Oxid Med Cell Longev; 2013; 2013():802870. PubMed ID: 24062879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration.
    Kyryakov P; Beach A; Richard VR; Burstein MT; Leonov A; Levy S; Titorenko VI
    Front Physiol; 2012; 3():256. PubMed ID: 22783207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.